高階累積量調(diào)制識(shí)別改進(jìn)算法的FPGA實(shí)現(xiàn)
由文獻(xiàn)知,對(duì)MFSK信號(hào)求導(dǎo),再經(jīng)中值濾波,在濾除含有沖激函數(shù)的項(xiàng)后,再計(jì)算所得信號(hào)的高階累積量值,如表2所示。
由以上分析可知,為了實(shí)現(xiàn)數(shù)字調(diào)制信號(hào)的調(diào)制識(shí)別,利用不同的累積量組合,從中提取了以下4個(gè)特征參數(shù),定義如下:
本文引用地址:http://www.biyoush.com/article/191395.htm
1.2 信號(hào)的調(diào)制識(shí)別流程
在低信噪比環(huán)境中,基于高階累積量的數(shù)字調(diào)制信號(hào)識(shí)別算法對(duì)2ASK和4ASK信號(hào)的識(shí)別率普遍較低。針對(duì)此問題,本文提出了高階累積量的改進(jìn)算法。文中在高階累積量算法的基礎(chǔ)上,對(duì)四個(gè)特征參數(shù)的判決順序稍作調(diào)整,將MASK信號(hào)與其他信號(hào)分離,取得了較好的效果。具體識(shí)別過程如下:
(1)用編程工具編程產(chǎn)生各種數(shù)字調(diào)制信號(hào),并加入信噪比已知的噪聲,作為待識(shí)別的信號(hào)。
(2)將接收到的待識(shí)別信號(hào)通過下變頻直接變換到零頻,然后利用正交下變頻技術(shù)得到復(fù)基帶調(diào)制信號(hào)。
(3)計(jì)算各種待識(shí)別信號(hào)的二、四、六階累積量,并計(jì)算其特征參數(shù)Fe1,F(xiàn)e2,T4。
(4)利用特征參數(shù)T4的識(shí)別,可以將信號(hào)分為兩組:第一組為MASK信號(hào),第二組為MPSK,16QAM,MFSK信號(hào)。利用Fe2的閾值(t1)實(shí)現(xiàn)
第一組組內(nèi)識(shí)別;再利用Fe2的另一個(gè)閾值(t2)和Fe1從第二組中識(shí)別出16QAM,MPSK信號(hào)。
(5)將待識(shí)別信號(hào)進(jìn)行微分后再經(jīng)中值濾波器,計(jì)算變換信號(hào)的高階累積量,并計(jì)算特征參數(shù)Fe3,利用Fe2實(shí)現(xiàn)MFSK類內(nèi)識(shí)別。
在信號(hào)的調(diào)制識(shí)別過程中,主要是根據(jù)決策樹方法進(jìn)行分類和識(shí)別。本文在提取上述四個(gè)特征參數(shù)的基礎(chǔ)上,根據(jù)不同的決策規(guī)則建立決策樹。經(jīng)過多次性能的仿真和比較,最終得到一種比較好的識(shí)別算法,如圖1所示。其中t0,t1,t2,t3,t4都是閾值。
評(píng)論