在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 高階累積量調(diào)制識(shí)別改進(jìn)算法的FPGA實(shí)現(xiàn)

            高階累積量調(diào)制識(shí)別改進(jìn)算法的FPGA實(shí)現(xiàn)

            作者: 時(shí)間:2011-01-17 來(lái)源:網(wǎng)絡(luò) 收藏

            摘要:基于的數(shù)字調(diào)制信號(hào)識(shí)別算法在低信噪比環(huán)境下識(shí)別率較低。針對(duì)這一問題,提出了,通過調(diào)整特征參數(shù)的判別順序先識(shí)別出MASK信號(hào)的方式,取得了較好的效果。討論了該算法的設(shè)計(jì),并利用Virtex-4開發(fā)板對(duì)該設(shè)計(jì)進(jìn)行硬件協(xié)同仿真測(cè)試。測(cè)試結(jié)果表明,該算法在低信噪比環(huán)境下對(duì)2ASK,4ASK,4PSK,16QAM信號(hào)的識(shí)別率有顯著提高。在信噪比為4dB時(shí),對(duì)2ASK,4A-SK信號(hào)的識(shí)別率分別為93.4%,100%。在信噪比為2 dB時(shí),對(duì)4PSK,16QAM信號(hào)的識(shí)別率最高,達(dá)到了99.7%。
            關(guān)鍵詞:System Generator;;;

            0 引言
            由于數(shù)字調(diào)制信號(hào)越來(lái)越多地應(yīng)用于通信信號(hào)處理領(lǐng)域,因此對(duì)數(shù)字信號(hào)的研究也越來(lái)越多。傳統(tǒng)的的判決方法有:決策判決法、高階累積量算法和人工神經(jīng)網(wǎng)絡(luò)算法等。但是決策判決法在低信噪比環(huán)境中識(shí)別率不高,而基于人工神經(jīng)網(wǎng)絡(luò)的識(shí)別方法計(jì)算復(fù)雜度較高。信號(hào)的高階累積量算法具有很好的抗噪性能,故對(duì)基于高階累積量的通信信號(hào)調(diào)制識(shí)別算法的研究受到了廣泛重視。文獻(xiàn)利用高階累積量實(shí)現(xiàn)了對(duì) 2ASK/BPSK,4ASK,4PSK,2FSK,4FSK信號(hào)的分類。文獻(xiàn)利用四階和六階累積量實(shí)現(xiàn)了對(duì) 2ASK,4ASK,8ASK,QPSK,8P-SK,16QAM信號(hào)的分類。文獻(xiàn)利用二、四、六階累積量實(shí)現(xiàn)了對(duì) 2ASK/BPSK,4ASK,QPSK,2FSK,4FSK,8FSK,16QAM信號(hào)的分類。文獻(xiàn)對(duì)高階累積量的四階、五階累積量進(jìn)行了優(yōu)化和仿真,但是在低信噪比的環(huán)境下,對(duì)信號(hào)的識(shí)別率都不高。
            在尋找更優(yōu)識(shí)別算法的過程中,以往的研究更多的把注意力放在了識(shí)別算法上,而沒注重算法的硬件設(shè)計(jì)與實(shí)現(xiàn)。System Generator for DSP是Xilinx公司開發(fā)的一款理想的DSP開發(fā)軟件,它對(duì)數(shù)字信號(hào)處理單元進(jìn)行系統(tǒng)建模,并將模型轉(zhuǎn)換成可靠的硬件實(shí)現(xiàn),是連接數(shù)字信號(hào)處理高層系統(tǒng)設(shè)計(jì)與Xilinx 實(shí)現(xiàn)的橋梁。針對(duì)上述問題,本文提出了高階累積量的,并在System Generator中實(shí)現(xiàn)了算法的FPGA設(shè)計(jì)。

            1 高階累積量的
            數(shù)字信號(hào)的調(diào)制識(shí)別通常經(jīng)過三個(gè)步驟:接收信號(hào)預(yù)處理、特征參數(shù)提取和調(diào)制方式識(shí)別。然而實(shí)現(xiàn)信號(hào)調(diào)制識(shí)別的關(guān)鍵環(huán)節(jié)是從接收信號(hào)中提取出用于識(shí)別的特征參數(shù)。下面首先介紹高階累積量算法是如何提取用于調(diào)制識(shí)別的特征參數(shù)的。
            1.1 特征參數(shù)的提取
            首先給出高階矩的定義,對(duì)于一個(gè)具有零均值的復(fù)隨機(jī)過程X(t),其p階混合矩可表示為:Mpq=E[X(t)p-qX*(t)q]。其中,*表示函數(shù)的共軛。然后定義高階累積量如下:
            d.JPG
            設(shè)信號(hào)的能量為E,利用文獻(xiàn)中提出的算術(shù)平均來(lái)代替統(tǒng)計(jì)平均的方法,計(jì)算各種數(shù)字調(diào)制信號(hào)的高階累積量,得到高階累積量的理論值,如表1所示。
            e.JPG

            從表1中可以看出,從信號(hào)的高階累積量中提取特征參數(shù),可以實(shí)現(xiàn)大部分信號(hào)的分類,而由于2ASK和BPSK信號(hào)的各累積量值相同,故利用高階累積量無(wú)法實(shí)現(xiàn)其分類。MFSK的高階累積量也相同,直接利用累積量無(wú)法實(shí)現(xiàn)其類內(nèi)識(shí)別。


            上一頁(yè) 1 2 3 4 下一頁(yè)

            評(píng)論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉