在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 設計應用 > 微波射頻設計中電子材料的選擇對熱管理的影響

            微波射頻設計中電子材料的選擇對熱管理的影響

            作者: 時間:2014-03-27 來源:網(wǎng)絡 收藏

            本文引用地址:http://www.biyoush.com/article/259518.htm

            微波/射頻設計中正確的熱管理需從仔細選擇開始,而印刷電路板(PCB)又是這些材料中最重要的一種。在大功率、高頻率的電路(如功放)中,熱量可能在放大器中的有源器件周圍積聚起來。為了防止器件結點、附近的電路元器件或甚至PCB材料的損壞,系統(tǒng)必須將熱量從有源器件中正確地傳導出去,并通過器件封裝、電路接地、散熱片、設備機殼和環(huán)境空氣安全地散發(fā)。PCB材料的選擇對大功率微波/射頻設計的總體熱管理有很大的影響。

            電路材料的能力與其控制溫升的能力有關,而溫升又是外加功率和耗散功率的函數(shù)。對于大多數(shù)電子元器件而言,工作溫度升高將會縮短其工作壽命,并且經(jīng)常還會降低其電氣性能。不管是環(huán)境溫度較高,還是因大功率工作而引起的電路及其元器件溫度升高,其結果都會導致高溫下的損壞和性能下降。根據(jù)電路必須耗散的功率大小,使該電路保持在較低的溫度下,通常能夠保證較高的可靠性。

            PCB在高溫下會發(fā)生什么現(xiàn)象呢?就像大多數(shù)材料一樣,PCB會隨溫 度變化而熱脹冷縮——當溫度上升時,PCB會在三個軸向上(長度、寬度和厚度)膨脹。這種隨溫度變化導致的膨脹程度,可以用PCB材料的熱膨脹系數(shù) (CTE)來表征。因為PCB通常由覆銅(用于形成傳輸線和地平面)電介質形成,所以該材料在x和y方向上的線性CTE,通常設計得與銅的CTE(約 17ppm/℃)相匹配。通過這種方法,這些材料就會隨溫度的變化而一起膨脹和收縮,從而最大程度地減小了兩種材料連接處的應力。

            電介質材料z軸(厚度)的CTE,通常設計為較低的值,以便最大程度地減小隨溫度而發(fā)生的尺寸變化,并保持電鍍通孔(PTH)的完整性。PTH為接地和多層電路板互連,提供所需的從電路板頂層到底層的路徑。

            除了機械變化以外,溫度還會影響PCB的電氣性能。例如,PCB層壓板的相對介電常數(shù)是溫度的函數(shù),由介電常數(shù)的熱系數(shù)這一參數(shù)所定義。該參數(shù)描述了介電常 數(shù)的變化(單位通常是ppm/℃)。由于高頻傳輸線的阻抗不僅取決于基板材料的厚度,而且取決于其介電常數(shù),因此z軸的CTE和作為溫度函數(shù)的介電常數(shù)的 變化,會顯著影響在這種材料上制作的微帶和帶狀傳輸線的阻抗。

            當然,微波電路依賴于元器件和電路結點之間緊密匹配的阻抗,來最大限度地減小可能導致信號損失和相位失真的反射。在功放電路中,阻抗匹配電路用于實現(xiàn)從功率晶體管的典型低阻抗到微波/射頻電路或系統(tǒng)的典型50Ω特性阻抗的轉化。由大功率信號的溫度效應引起的傳輸線阻抗的變化,可能改變高頻放大器的頻率響應,因此,應通過仔細選擇PCB層壓板來盡可能減小這些效應。

            在選擇在大功率電平和高頻下有助于最大限度減小熱量產(chǎn)生的PCB材料時,還有許多其他的參數(shù)也很有用。在某個溫度點,某些材料會改變其狀態(tài),這個溫度就是其 中的一個參數(shù)——被稱為液態(tài)玻璃化轉變溫度或玻璃化轉變溫度(簡寫為Tg)。例如,它能夠指示在一種材料的CTE特性中,將發(fā)生巨大改變的溫度(圖1)。 由于材料的CTE會經(jīng)歷相當大的變化,當工作溫度超過Tg時,材料的機械和電氣性能會變得不穩(wěn)定,因此,除了短暫的處理過程(如在回流焊過程中,材料要求 處于較高溫度下)外,工作溫度應始終保持在該溫度以下。

            圖1:PCB材料的熱膨脹系數(shù)(CTE)特性在高于材料的玻璃化溫度Tg時會發(fā)生急劇變化,并且在機械和電氣方面變得不穩(wěn)定

            另外一個與溫度有關的關鍵參數(shù)是PCB的最高工作溫度(MOT)。MOT是保險商實驗室(UL)給特定電路制作場所使用特定PCB材料生產(chǎn)的單一PCB結構 定義的一個額定值。MOT是PCB能夠在任何時長內正常工作又不會顯著降低電路關鍵性能屬性的最高溫度。如果電路在高于MOT的溫度下工作了一段較長時 間,可靠性風險將值得考慮。MOT額定值意味著為PCB提供了安全的高溫指示,雖然它并未包含高輸入功率電平對PCB的影響。

            PCB材料的熱導率可以用作層壓板散熱效率的相對指示器。該參數(shù)本質上描述了PCB材料的導熱能力,其計量單位是每米材料每開爾文溫度的瓦特功率。與電導率和電子在材 料中的流動類似,熱導率用于預計熱量通過給定材料時的能量損耗率。熱導率的倒數(shù)是熱阻率,或材料阻止熱量流動的能力。

            跟蹤熱導率

            熱導率取決于材料的各種屬性,例如其分子結構。舉例來說,玻璃是一種較差的熱導體,具有1.1W/(m-K)的極低熱導率。另一方面,銅對熱量流動的阻抗很低,具有401W/(m-K)的非常高的熱導率。由于PCB介電材料的熱導率特別低(高Tg FR-4電路材料的熱導率一般在0.24W/(m-K)左右),因此熱量能夠很容易地在大功率PCB的導線(這些導線通常是用具有極低熱阻的銅做的)上積聚起來。但選擇具有較高熱導率的PCB材料,允許電路工作在較高的功率電平。

            下表對一些典型的PCB層壓材料進行了比較(其中包括 Rogers公司相對較新的產(chǎn)品RT/duroid 6035HTC層壓材料)。如表中所示那樣,RT/duroid 6035HTC材料具有比FR-4、甚至若干低損耗高頻層壓材料高得多的熱導率。這種材料由陶瓷填充的PTFE復合電介質和標準或反向處理過的電解 (ED)銅箔組成。該材料由于具有很高的熱導率,因而被廣泛地用于數(shù)百瓦特的功率微波放大器中進行高效的熱管理。在z軸上,它在10GHz時的相對介電常 數(shù)為3.50,并且其在整個電路板上的公差保持在±0.05之內,從而保持傳輸線的阻抗一致。x和y軸的CTE是19ppm/℃,與銅的CTE接近匹配。

            回流焊相關文章:回流焊原理

            上一頁 1 2 3 下一頁

            評論


            相關推薦

            技術專區(qū)

            關閉