在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            關(guān) 閉

            新聞中心

            EEPW首頁 > 安全與國防 > 設(shè)計(jì)應(yīng)用 > 語音識別技術(shù)的研究與發(fā)展

            語音識別技術(shù)的研究與發(fā)展

            作者: 時(shí)間:2010-03-03 來源:網(wǎng)絡(luò) 收藏

            (2)模塊:負(fù)責(zé)計(jì)算語音的聲學(xué)參數(shù),并進(jìn)行特征的計(jì)算,以便提取出反映信號特征的關(guān)鍵特征參數(shù)用于后續(xù)處理。現(xiàn)在較常用的特征參數(shù)有線性預(yù)測(LPC)參數(shù)、線譜對(LSP)參數(shù)、LPCC、MFCC、ASCC、感覺加權(quán)的線性預(yù)測(PLP)參數(shù)、動(dòng)態(tài)差分參數(shù)和高階信號譜類特征等[1]。其中,Mel頻率倒譜系數(shù)(MFCC)參數(shù)因其良好的抗噪性和魯棒性而應(yīng)用廣泛。

            (3)訓(xùn)練階段:用戶輸入若干次訓(xùn)練語音,經(jīng)過預(yù)處理和后得到特征矢量參數(shù),建立或修改訓(xùn)練語音的參考模式庫。

            (4)識別階段:將輸入的語音提取特征矢量參數(shù)后與參考模式庫中的模式進(jìn)行相似性度量比較,并結(jié)合一定的判別規(guī)則和專家知識(如構(gòu)詞規(guī)則,語法規(guī)則等)得出最終的識別結(jié)果。

            4 的幾種基本方法

            當(dāng)今技術(shù)的主流算法,主要有基于動(dòng)態(tài)時(shí)間規(guī)整(DTW)算法、基于非參數(shù)模型的矢量量化(VQ)方法、基于參數(shù)模型的隱馬爾可夫模型(HMM)的方法、基于人工神經(jīng)網(wǎng)絡(luò)(ANN)和支持向量機(jī)等方法。

            4.1 動(dòng)態(tài)時(shí)間規(guī)整(DTW)

            DTW是把時(shí)間規(guī)整和距離測度計(jì)算結(jié)合起來的一種非線性規(guī)整技術(shù),是較早的一種模式匹配和模型訓(xùn)練技術(shù)。該方法成功解決了語音信號特征參數(shù)序列比較時(shí)時(shí)長不等的難題,在孤立詞語音識別中獲得了良好性能。

            4.2 矢量量化(VQ)

            矢量量化是一種重要的信號壓縮方法,主要適用于小詞匯量、孤立詞的語音識別中。其過程是:將語音信號波形的k個(gè)樣點(diǎn)的每1幀,或有k個(gè)參數(shù)的每1參數(shù)幀,構(gòu)成k維空間中的1個(gè)矢量,然后對矢量進(jìn)行量化。量化時(shí),將k維無限空間劃分為M個(gè)區(qū)域邊界,然后將輸入矢量與這些邊界進(jìn)行比較,并被量化為“距離”最小的區(qū)域邊界的中心矢量值。矢量量化器的設(shè)計(jì)就是從大量信號樣本中訓(xùn)練出好的碼書,從實(shí)際效果出發(fā)尋找到好的失真測度定義公式,設(shè)計(jì)出最佳的矢量量化系統(tǒng),用最少的搜索和計(jì)算失真的運(yùn)算量,實(shí)現(xiàn)最大可能的平均信噪比。

            4.3 隱馬爾可夫模型(HMM)

            隱馬爾可夫模型是20世紀(jì)70年代引入語音識別理論的,它的出現(xiàn)使得自然語音識別系統(tǒng)取得了實(shí)質(zhì)性的突破。目前大多數(shù)大詞匯量、連續(xù)語音的非特定人語音識別系統(tǒng)都是基于HMM模型的。

            HMM是對語音信號的時(shí)間序列結(jié)構(gòu)建立統(tǒng)計(jì)模型,將其看作一個(gè)數(shù)學(xué)上的雙重隨機(jī)過程:一個(gè)是用具有有限狀態(tài)數(shù)的Markov鏈來模擬語音信號統(tǒng)計(jì)特性變化的隱含的隨機(jī)過程,另一個(gè)是與Markov鏈的每一個(gè)狀態(tài)相關(guān)聯(lián)的觀測序列的隨機(jī)過程。前者通過后者表現(xiàn)出來,但前者的具體參數(shù)是不可測的。人的言語過程實(shí)際上就是一個(gè)雙重隨機(jī)過程,語音信號本身是一個(gè)可觀測的時(shí)變序列,是由大腦根據(jù)語法知識和言語需要(不可觀測的狀態(tài))發(fā)出的音素的參數(shù)流。HMM合理地模仿了這一過程,很好地描述了語音信號的整體非平穩(wěn)性和局部平穩(wěn)性,是較為理想的一種語音模型。

            HMM模型可細(xì)分為離散隱馬爾可夫模型(DHMM)和連續(xù)隱馬爾可夫模型(CHMM)以及半連續(xù)隱馬爾可夫模型(SCHMM)等[3]。

            4.4 人工神經(jīng)元網(wǎng)絡(luò)(ANN)

            人工神經(jīng)元網(wǎng)絡(luò)在語音識別中的應(yīng)用是目前研究的又一熱點(diǎn)。ANN實(shí)際上是一個(gè)超大規(guī)模非線性連續(xù)時(shí)間自適應(yīng)信息處理系統(tǒng),它模擬了人類神經(jīng)元活動(dòng)的原理,最主要的特征為連續(xù)時(shí)間非線性動(dòng)力學(xué)、網(wǎng)絡(luò)的全局作用、大規(guī)模并行分布處理及高度的穩(wěn)健性和學(xué)習(xí)聯(lián)想能力。這些能力是HMM模型不具備的。但ANN又不具有HMM模型的動(dòng)態(tài)時(shí)間歸正性能。因此,人們嘗試研究基于HMM和ANN的混合模型,把兩者的優(yōu)點(diǎn)有機(jī)結(jié)合起來,從而提高整個(gè)模型的魯棒性,這也是目前研究的一個(gè)熱點(diǎn)。



            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉