硅鍺技術(shù)以功率放大器進(jìn)軍無(wú)線通信和手機(jī)應(yīng)用領(lǐng)域
隨著工藝進(jìn)步,硅鍺技術(shù)業(yè)已用于CDMA、GSM和 WLAN 應(yīng)用中的高功率放大器,提供新一代集成解決方案
現(xiàn)今,硅鍺 (silicon germanium, SiGe) 技術(shù)已經(jīng)從一種富有潛力的技術(shù),發(fā)展成為目前和新一代移動(dòng)設(shè)備的先進(jìn)解決方案,廣泛應(yīng)用于手機(jī)、無(wú)線局域網(wǎng) (WLAN) 和藍(lán)牙等產(chǎn)品。自上世紀(jì) 80 年代問(wèn)世以來(lái),SiGe 一直是那些追求低成本,并要求性能高于普通硅器件的高頻應(yīng)用開發(fā)人員最感興趣的一種半導(dǎo)體材料。在無(wú)線通信應(yīng)用中,這種技術(shù)已被廣泛接受,用于下變頻器、低噪聲放大器 (low-noise amplifier, LNA)、前置放大器 (preamplifier) 和 WLAN 功率放大器 (power amplifier, PA)。
現(xiàn)在,SiGe 技術(shù)已經(jīng)應(yīng)用于高功率放大器產(chǎn)品,如CDMA和GSM手機(jī)。由于這種半導(dǎo)體可以集成更多電路,它將在未來(lái)功率放大器與無(wú)線射頻 (RF) 電路的集成方面發(fā)揮重要作用。
SiGe技術(shù)的優(yōu)勢(shì)
降低手機(jī)設(shè)計(jì)成本的兩大主要因素是提高集成度,以及使用如SiGe等易于集成的低成本技術(shù)。
SiGe 技術(shù)具備種種極具吸引力的優(yōu)點(diǎn)。作為硅材料中的“小兄弟”,SiGe既擁有硅工藝的集成度、良率和成本優(yōu)勢(shì),又具備第3到第5類半導(dǎo)體 (如砷化鎵(GaAs) 和璘化銦 (InP)) 在速度方面的優(yōu)點(diǎn)。只要增加金屬和介質(zhì)疊層來(lái)降低寄生電容和電感,就可以采用SiGe半導(dǎo)體技術(shù)集成高質(zhì)量無(wú)源部件。此外,通過(guò)控制鍺摻雜還可設(shè)計(jì)器件隨溫度的行為變化。SiGe BiCMOS 工藝技術(shù)幾乎與硅半導(dǎo)體超大規(guī)模集成電路 (VLSI) 行業(yè)中的所有新技術(shù)兼容,包括 SOI 技術(shù)和溝道隔離技術(shù) (注1)。
實(shí)驗(yàn)證明,SiGe 器件的工作頻率可高達(dá) 350 GHz (注2);而普通硅芯片的工作頻率只能達(dá)到幾個(gè) GHz,而且其電流速度為普通硅半導(dǎo)體的2到4倍 (注3)。此外,SiGe器件還在噪聲、功效、散熱性能方面優(yōu)于第3至第5類雙極晶體管。事實(shí)上,硅基片的熱導(dǎo)率是GaAs的3倍。
SiGe 的種種優(yōu)勢(shì)使其能在 WLAN、有線電視電話和光通信應(yīng)用中實(shí)現(xiàn)低成本、高性能產(chǎn)品。隨著擊穿電壓和高性能無(wú)源部件集成領(lǐng)域的技術(shù)發(fā)展,SiGe 正逐漸占據(jù)傳統(tǒng)的 GaAs 領(lǐng)地,即手機(jī)功率放大器應(yīng)用的領(lǐng)域。
擊穿電壓
手機(jī)功率放大器必須能在高壓下應(yīng)對(duì)10:1的電壓駐波比 (Voltage Standing Wave Ratio, VSWR),并能發(fā)送 +28dBm (用于CDMA手機(jī)) 到 +35dBm (用于GSM手機(jī)) 的信號(hào)。由于 GaAs 半導(dǎo)體具有較高的擊穿電壓,因此傳統(tǒng)的功率放大器一直采用 GaAs 技術(shù)。然而 GaAs 這一優(yōu)勢(shì)的吸引力很有限,因?yàn)檫@種半導(dǎo)體的成本高,又難以與其它無(wú)線電路相集成。這種缺陷在需要多個(gè)功率放大器的多模手機(jī)上尤其明顯;而且由于還沒(méi)有低成本的硅半導(dǎo)體工藝可以實(shí)現(xiàn)這類集成,手機(jī)的用材將會(huì)增加。
為了制造出滿足嚴(yán)格的手機(jī)技術(shù)要求的 SiGe 功率放大器,加拿大 SiGe 半導(dǎo)體公司采用fT為 30GHz 的主流 SiGe 工藝,與 InGaP使用的主流工藝相類似。選擇這種工藝,主要著眼于手機(jī)應(yīng)用環(huán)境下功率放大器的擊穿電壓、線性性能、效率以及集成方面的優(yōu)勢(shì)。
為了確保高功率下的可靠性, SiGe 技術(shù)的 +5.5VDC 擊穿電壓必須獲得改善。SiGe 半導(dǎo)體公司的設(shè)計(jì)人員開發(fā)出專有的電路、工藝技術(shù)和晶體管。利用這些開發(fā)成果就可以生產(chǎn)出高功率的功率放大器,其擊穿電壓能夠在整個(gè)工作循環(huán)中,以及在滿功率和 +5V (當(dāng)用于CDMA手機(jī)) 或 +4.5V (當(dāng)用于GSM手機(jī)) 電源電壓下,可靠地應(yīng)對(duì)10:1電壓駐波比。 (圖2)
圖2:SiGe功率放大器能在整個(gè)工作循環(huán)中,在 +35 dBm的峰值輸入功率和 +5 VDC條件下應(yīng)對(duì)10:1電壓駐波比
低擊穿電壓和隨之引起的可靠性問(wèn)題是 RF CMOS (另一種基于硅半導(dǎo)體的技術(shù)) 無(wú)法實(shí)現(xiàn)體積小、占位少、成本低和功效高射頻功率放大器的原因所在 (參見(jiàn)表 1)。例如,為了提高工作效率,RF CMOS 芯片必須大幅度提高電流強(qiáng)度,因此需要更大的晶體管,這意味著芯片的尺寸會(huì)變大。此外,晶體管增大后會(huì)使器件的功效降低。這些權(quán)衡因素使 RF CMOS 技術(shù)在手機(jī)的高效功率放大器領(lǐng)域上很不稱職。
集成無(wú)源部件
過(guò)去,SiGe 器件中無(wú)源部件的性能低于 GaAs 中的無(wú)源部件,尤其是在無(wú)線收發(fā)設(shè)計(jì)中扮演關(guān)鍵角色的電感組件。新的SiGe半導(dǎo)體工藝采用較厚的銅和鋁頂層來(lái)實(shí)現(xiàn)高性能無(wú)源部件的集成。由于 SiGe 器件具有最多 5 個(gè)互連層,因此無(wú)源部件可以堆疊在芯片上,并在疊層頂部加入高品質(zhì) (即高Q值) 的電感器,而最終器件將在工藝技術(shù)上勝過(guò)第3到第5類半導(dǎo)體材料制造的產(chǎn)品。
手機(jī)應(yīng)用
由于技術(shù)的進(jìn)步,SiGe現(xiàn)已具有較高的擊穿電壓,足以達(dá)到GSM-EDGE/CDMA以及最新 WLAN (包括802.11g標(biāo)準(zhǔn)的WLAN) 應(yīng)用所要求的功率放大器效率和線性度指標(biāo)。
因此,在設(shè)計(jì)電池供電設(shè)備時(shí),設(shè)計(jì)人員可以充分利用 SiGe 技術(shù)在成本、集成度、噪聲和高頻特性方面的優(yōu)勢(shì)。而且,在數(shù)字電路需要與模擬電路接口時(shí),可采用 SiGe BiCMOS 技術(shù),因?yàn)槠潆妷河嗔亢驮肼曅阅芫弦?(RF CMOS中的電壓會(huì)逐漸遞減,這將會(huì)減弱數(shù)字電路與具有高動(dòng)態(tài)電壓范圍的模擬輸入的接口能力)。
與用于手機(jī)功率放大器的第3到第5類半導(dǎo)體相比,SiGe 的主要優(yōu)勢(shì)體現(xiàn)在成本上。SiGe 的主流工藝采用200毫米 (8英寸) 晶圓,并正在向 300 毫米晶圓目標(biāo)發(fā)展;但 GaAs 卻是使用 4 到 6 英寸晶圓制造的,由于晶圓尺寸較小,在良率和工藝成本方面不利。
采用最新的沉積工具如批量超高真空化學(xué)氣相沉積系統(tǒng) (ultra-high vacuum chemical vapor deposition, UHVCVD) ,以及單晶圓工具,能夠在200毫米晶圓上可靠地沉積出高質(zhì)量的 SiGe,因此可以使用硅制備設(shè)施或硅代工廠實(shí)現(xiàn)SiGe基層的外延生長(zhǎng)。
采用 SiGe 的另一個(gè)主要優(yōu)勢(shì)是高集成度,通過(guò)使用SiGe,設(shè)計(jì)人員可在功率放大器周圍集成更多的控制電路。這樣,最終的器件就比第3到第 5類半導(dǎo)體器件更加節(jié)省板卡空間,因?yàn)楹笳咝枰β史糯笃餍酒偌右粔K CMOS 控制芯片,而SiGe卻能將這兩項(xiàng)功能集成到一塊芯片中,并具有集成更多無(wú)線功能的潛力。
功率放大器需要控制電路來(lái)實(shí)現(xiàn) RF 輸出功率控制所需的一些調(diào)節(jié)功能、或直接控制功率放大器的開啟/關(guān)閉。同時(shí),這個(gè)控制電路也被用于提高功率放大器的效率,使其具有較寬的射頻輸出功率范圍。例如,輸出功率的大小可根據(jù)手機(jī)距基站的距離變化;而為了最大限度地延長(zhǎng)通話時(shí)間,設(shè)計(jì)人員需要在整個(gè)功率范圍來(lái)優(yōu)化功率放大器的性能,而不是僅就最大輸出功率進(jìn)行優(yōu)化。這些設(shè)計(jì)都可以通過(guò)集成控制電路來(lái)實(shí)現(xiàn)。
在不久將來(lái),設(shè)計(jì)人員很可能需要將 RF 電路集成到 CMOS 電路或功率放大器芯片中。采用 SiGe技術(shù),設(shè)計(jì)人員就可以將功率放大器和 RF 電路集成在一起,卻不會(huì)影響功率放大器的效率,因而不會(huì)縮短手機(jī)電池的壽命。這一點(diǎn)很重要,因?yàn)榧?RF 電路應(yīng)該比將所有無(wú)線電路 (包括功率放大器部分) 都集成到 CMOS 電路中尺寸更小,而成本效益更高。
例如,為了延長(zhǎng)手機(jī)的通話時(shí)間和實(shí)現(xiàn)更多功能,CMOS 工藝尺寸應(yīng)當(dāng)縮小到 90nm 或更小,而且由于掩模成本太昂貴,因此也無(wú)法在CMOS中開發(fā)無(wú)線電路。采用SiGe技術(shù)卻是實(shí)現(xiàn)集功率放大器、控制電路和 RF電路于一身的高性能、高集成度無(wú)線前端的好方案。
其它應(yīng)用
SiGe 半導(dǎo)體制造和設(shè)計(jì)技術(shù)在手機(jī)應(yīng)用領(lǐng)域的進(jìn)展,也為包括 WLAN 和光通信在內(nèi)的其它通信應(yīng)用領(lǐng)域帶來(lái)好處。
在未來(lái)的產(chǎn)品中,WLAN 的數(shù)字電路很可能被納入通信處理器中,這就產(chǎn)生了對(duì)獨(dú)立無(wú)線電路的需求。SiGe BiCMOS 正是非常適合這一需求的高成本效益低功率方案。對(duì)于藍(lán)牙應(yīng)用,可采用 SiGe 生產(chǎn)出噪音極低的低功率無(wú)線電路。在光通信應(yīng)用領(lǐng)域,采用 SiGe 可集成更多的控制電路和光網(wǎng)絡(luò)接口電路;并將噪聲極低的放大器和所有控制電路放置到距離光部件很近的位置。
前景展望
SiGe BiCMOS 現(xiàn)已發(fā)展成為相當(dāng)成熟的未來(lái)無(wú)線技術(shù),其擊穿電壓和集成能力可以滿足現(xiàn)今手機(jī)、WLAN 和藍(lán)牙應(yīng)用的功率放大器和無(wú)線電路要求。此外,它也是非常有前途的技術(shù),能夠滿足一些可以預(yù)見(jiàn)的未來(lái)集成要求。
注1:Browne, Jack. “SiGe Technology Makes Practical Advances,” Microwaves RF. October 1999.
注2:Johansson, Ted Johan Pejnefors. “Modular Concept Overcomes SiGe Bipolar Process Problems.” Compound Semiconductor. June 2003.
注3:Ouellette, Jennifer. “Silicon-Germanium Gives Semiconductors the Edge.” The Industrial Physicist. June/July 2002.
評(píng)論