在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 電源與新能源 > 設(shè)計應用 > 深度 | GaN還是SiC,電氣工程師該如何選擇?

            深度 | GaN還是SiC,電氣工程師該如何選擇?

            作者: 時間:2024-12-17 來源:英飛凌 收藏

            /  編輯推薦 /

            本文引用地址:http://www.biyoush.com/article/202412/465563.htm

            氮化鎵晶體管和碳化硅MOSFET是近年來新興的功率半導體,相比于傳統(tǒng)的硅材料功率半導體,他們都具有許多非常優(yōu)異的特性:耐壓高,導通電阻小,寄生參數(shù)小等。他們也有各自與眾不同的特性:氮化鎵晶體管的極小寄生參數(shù),極快開關(guān)速度使其特別適合高頻應用。碳化硅MOSFET的易驅(qū)動,高可靠等特性使其適合于高性能開關(guān)電源中。

            本文基于科技有限公司的氮化鎵晶體管和碳化硅MOSFET產(chǎn)品,對他們的結(jié)構(gòu)、特性、兩者的應用差異等方面進行了詳細的介紹。

            引 言

            作為第三代功率半導體的絕代雙驕,氮化鎵晶體管和碳化硅MOSFET日益引起工業(yè)界,特別是電力電子工程師的重視。之所以工程師如此重視這兩種功率半導體,是因為其材料與傳統(tǒng)的硅材料相比有諸多的優(yōu)點,如圖1所示。氮化鎵和碳化硅材料具有更大的禁帶寬度,更高的臨界場強使得基于這兩種材料的功率半導體具有高耐壓,低導通電阻,寄生參數(shù)小等優(yōu)異特性。當應用于開關(guān)電源領(lǐng)域中,具有損耗小,工作頻率高,可靠性高等優(yōu)點,可以大大提升開關(guān)電源的效率,功率密度和可靠性等性能。

            圖1:硅、碳化硅,氮化鎵三種材料關(guān)鍵特性對比

            由于具有以上優(yōu)異的特性,氮化鎵晶體管和碳化硅MOSFET正越來越多的被應用于工業(yè)領(lǐng)域,且將被更大規(guī)模的應用。


            氮化鎵晶體管結(jié)構(gòu)及其特性

            2.1

             

            氮化鎵晶體管的結(jié)構(gòu)

            與硅材料的功率半導體不同,氮化鎵晶體管通過兩種不同禁帶寬度(通常是Al)材料在交界面的壓電效應形成的二維電子氣(2DEG)來導電,如圖2所示。由于二維電子氣只有高濃度電子導電,因此不存在硅MOSFET的少數(shù)載流子復合(即體二極管反向恢復)的問題。

            圖2:氮化鎵導電原理示意圖

            圖2所示的基本氮化鎵晶體管的結(jié)構(gòu)是一種耗盡模式(depletion-mode)的高電子移動率晶體管(HEMT),這意味著在門極和源極之間不加任何電壓(V GS =0V)情況下氮化鎵晶體管的漏極和元件之間是導通的,即是常開器件。這與傳統(tǒng)的常閉型MOSFET或者IGBT功率開關(guān)都完全不同,對于工業(yè)應用特別是開關(guān)電源領(lǐng)域是非常難以使用的。為了應對這一問題,業(yè)界通常有兩種解決方案,一是采用級聯(lián)(cascode)結(jié)構(gòu),二是采用在門極增加P型氮化鎵從而形成增強型(常閉)晶體管。兩者結(jié)構(gòu)如圖3所示。

            圖3:兩種結(jié)構(gòu)的氮化鎵晶體管

            級聯(lián)結(jié)構(gòu)的氮化鎵是耗盡型氮化鎵與一個低壓的硅MOSFET級聯(lián)在一起,該結(jié)構(gòu)的好處是其驅(qū)動與傳統(tǒng)硅MOSFET的驅(qū)動完全相同(因為驅(qū)動的就是一個硅MOSFET),但是該結(jié)構(gòu)也有很大的缺點,首先硅MOSFET有體二極管,在氮化鎵反向?qū)娏鲿r又存在體二極管的反向恢復問題。其次硅MOSFET的漏極與耗盡型氮化鎵的源極相連,在硅MOSFET開通和關(guān)斷過程中漏極對源極出現(xiàn)的振蕩就是氮化鎵源極對門極的振蕩,由于此振蕩時不可避免的,那么就存在氮化鎵晶體管被誤開通和關(guān)斷的可能。最后由于是兩個功率器件級聯(lián)在一起,限制了整個氮化鎵器件的導通電阻的進一步減小的可能性。

            由于級聯(lián)結(jié)構(gòu)存在以上問題,在功率半導體界氮化鎵晶體管的主流技術(shù)是增強型氮化鎵晶體管。以科技有限公司的氮化鎵晶體管Cool?為例,其詳細結(jié)構(gòu)如圖4所示。

            圖4:CoolGaN?結(jié)構(gòu)示意圖

            如圖4所示,目前業(yè)界的氮化鎵晶體管產(chǎn)品是平面結(jié)構(gòu),即源極,門極和漏極在同一平面內(nèi),這與與超級結(jié)技術(shù)(Super Junction)為代表的硅MOSFET的垂直結(jié)構(gòu)不同。門極下面的P-GaN結(jié)構(gòu)形成了前面所述的增強型氮化鎵晶體管。漏極旁邊的另一個p-GaN結(jié)構(gòu)是為了解決氮化鎵晶體管中常出現(xiàn)的電流坍陷(Current collapse)問題。科技有限公司的CoolGaN?產(chǎn)品的基材(Substrate)采用硅材料,這樣可以大大降低氮化鎵晶體管的材料成本。由于硅材料和氮化鎵材料的熱膨脹系數(shù)差異很大,因此在基材和GaN之間增加了許多過渡層(Transition layers),從而保證氮化鎵晶體管在高低溫循環(huán),高低溫沖擊等惡劣工況下不會出現(xiàn)晶圓分層等失效問題。

            2.2

             

            氮化鎵晶體管的特性

            基于圖4所示的結(jié)構(gòu),CoolGaN?具有表1所示特性及其帶來的優(yōu)點。

            表1:CoolGaN 的特性及其帶來的優(yōu)點

            從表1所示特性可知,氮化鎵晶體管沒有體二極管但仍舊可以反向通流,因此非常適合用于需要功率開關(guān)反向通流且會被硬關(guān)斷(hard-commutation)的電路,如電流連續(xù)模式(CCM)的圖騰柱無橋PFC中,可以獲得極高的可靠性和效率。電路拓撲示意圖如圖5所示。圖中Q1和Q2為氮化鎵晶體管,Q3和Q4為硅MOSFET。

            圖5:采用氮化鎵晶體管的圖騰柱PFC拓撲示意圖

            從表1還可獲知氮化鎵的開關(guān)速度極快,驅(qū)動損耗小,因此非常適合于高頻應用。采用氮化鎵晶體管的高頻開關(guān)電源具有功率密度高,效率高的優(yōu)點。圖6展示了由英飛凌公司設(shè)計的一款3.6KW LLC拓撲DC-DC轉(zhuǎn)換器,LLC的諧振頻率為350KHz,該轉(zhuǎn)化器功率密度達到160W/in^3且最高效率超過98%。

            圖6:采用CoolGaN?的3.6KW LLC轉(zhuǎn)換電路

            由以上分析可知,氮化鎵晶體管適合于高效率,高頻率,高功率密度要求的應用場合。


            碳化硅MOSFET結(jié)構(gòu)及其特性

            3.1

             

            碳化硅MOSFET的結(jié)構(gòu)

            常見的平面型(Planar)碳化硅MOSFET的結(jié)構(gòu)如圖7所示。為了減小通道電阻,這種結(jié)構(gòu)通常設(shè)計為很薄的門極氧化層,由此帶來在較高的門極輸入電壓下門極氧化層的可靠性風險。為了解決這個問題英飛凌科技有限公司的碳化硅MOSFET產(chǎn)品Cool?采用了不同的門極結(jié)構(gòu),該結(jié)構(gòu)稱為溝槽型(Trench)碳化硅MOSFET,其門極結(jié)構(gòu)如圖8所示。采用此結(jié)構(gòu)后,碳化硅MOSFET的通道電阻不再與門極氧化層強相關(guān),那么可以在保證門極高靠可行性同時導通電阻仍舊可以做到極低。

            圖7:平面型碳化硅MOSFET結(jié)構(gòu)示意圖

            圖8:Cool?溝槽型門極結(jié)構(gòu)

            3.2

             

            碳化硅MOSFET的特性

            與氮化鎵晶體管類似,碳化硅MOSFET同樣具有導通電阻小,寄生參數(shù)小等特點,另外其體二極管特性也比硅MOSFET大為提升。圖9是英飛凌碳化硅650V耐壓MOSFET Cool?與目前業(yè)界體二極管性能最好的硅材料功率MOSFET CoolMOS CFD7的兩項主要指標R DS(on) *Q rr 和R DS(on) *Q oss 的對比,前一項是衡量體二極管反向恢復特性的指標,后一項是衡量MOSFET輸出電容上存儲的電荷量的指標。這兩項數(shù)值越小,表明反向恢復特性越好,存儲的電荷越低(軟開關(guān)拓撲中,半橋結(jié)構(gòu)上下功率管所需要的死區(qū)越短)??梢钥闯觯蓟鐼OSFET相比相近導通電阻的硅MOSFET,反向恢復電荷只有1/6左右,輸出電容上的電荷只有1/5左右。因此碳化硅MOSFET特別適合于體二極管會被硬關(guān)斷的拓撲(例如電流連續(xù)模式圖騰柱無橋PFC)及軟開關(guān)拓撲(LLC,移相全橋等)。

            碳化硅MOSFET還有一項出眾的特性:短路能力。相比硅MOSFET短路時間大大提升,這對于變頻器等馬達驅(qū)動應用非常重要,圖10給出了英飛凌CoolSiC?、CoolMOS?及競爭對手短路能力的對比圖。從圖可知CoolSiC?實現(xiàn)了短路時間長,短路電流小等優(yōu)異特性,短路狀態(tài)下的可靠性大大提高。

            圖9:碳化硅MOSFET和硅MOSFET的性能對比

            圖10:碳化硅MOSFET短路能力比較

            本章節(jié)對氮化鎵晶體管和碳化硅MOSFET各自的結(jié)構(gòu)和特性進行了介紹,下面將對兩者在參數(shù)上和實際電路上進行對比。


            氮化鎵和碳化硅MOSFET對比

            4.1

             

            電氣參數(shù)對比

            表2是基于英飛凌科技有限公司的氮化鎵晶體管CoolGaN?和碳化硅MOSFET CoolSiC?,對兩種功率半導體的關(guān)鍵參數(shù)進行了對比。

            表2:CoolGaN?和碳化硅MOSFET CoolSiC?關(guān)鍵參數(shù)對比

            從表2可知,氮化鎵晶體管在動態(tài)參數(shù)上都低于碳化硅MOSFET,因此氮化鎵晶體管的開關(guān)損耗低于碳化硅MOSFET,在高工作頻率下的優(yōu)勢會更明顯。電流反向流動時(源極到漏極)氮化鎵晶體管的壓降與其門極到源極的驅(qū)動電壓相關(guān),需要根據(jù)應用情況對比孰高孰低。對于最后一項門限電壓V gs(th) ,氮化鎵晶體管的數(shù)值非常小,意味著對于氮化鎵晶體管的驅(qū)動設(shè)計要非常注意,如果門極上的噪聲較大,有可能引起氮化鎵晶體管的誤開通。同時CoolGaN?為電流型驅(qū)動模式,與傳統(tǒng)的電壓型驅(qū)動有所不同。而碳化硅MOSFET的門限電壓高很多,其驅(qū)動要求與IGBT驅(qū)動非常接近。

            圖11給出了另外一個重要的參數(shù)的對比,即導通電阻R DS(on) 隨溫度變化率。眾所周知功率半導體開關(guān)的導通電阻都是正溫度系數(shù),即結(jié)溫越高則導通電阻越大。從圖11可知碳化硅MOSFET的溫升系數(shù)遠小于氮化硅晶體管以及硅MOSFET,在結(jié)溫100°C時相差已經(jīng)達到30%和50%。根據(jù)圖11可知,假設(shè)在25°C結(jié)溫時碳化硅MOSFET和氮化鎵晶體管的導通電阻相同,在同一個應用電路中意味著兩者的導通損耗(〖I Drms 〗^2*R _( DS(on) ))相同,但是當兩者的結(jié)溫升高到100°C時,碳化硅MOSFET的導通損耗只有氮化硅晶體管的70%,這對于那些環(huán)境要求苛刻,高溫下也需要保持高效率的應用場景非常具有吸引力。

            圖11:碳化硅MOSFET,氮化鎵晶體管和硅MOSFET導通電阻隨結(jié)溫變化曲線

            4.2

             

            應用對比

            首先在圖5所示的電流連續(xù)模式(CCM)的圖騰柱(totem-pole)無橋PFC電路上對氮化鎵晶體管和碳化硅MOSFET對轉(zhuǎn)換效率的影響進行了測試,測試條件如表3所示。

            表3:PFC電路測試條件

            測試中每種功率開關(guān)都測試了兩種導通電阻的器件,對于氮化鎵晶體管,R DS(on) 分別為35mohm和45mohm,碳化硅MOSFET則分別是65mohm和80mohm。測試結(jié)果如圖12所示。在輕載情況下由于功率開關(guān)的開關(guān)損耗高于導通損耗,因此氮化鎵晶體管的效率明顯高于碳化硅晶體管。當負載逐漸加重時,導通損耗在總損耗中的占比高于開關(guān)損耗。同時由于負載加大,功率開關(guān)的溫升升高,而根據(jù)圖11導通電阻隨結(jié)溫的變化率可知碳化硅晶體管的導通電阻隨溫度上身而增加較小,因此在高溫下兩種功率開關(guān)的效率差異已經(jīng)非常小,雖然碳化硅晶體管的25°C下的導通電阻是高于氮化鎵晶體管的。

            圖12:碳化硅MOSFET,氮化鎵晶體管在PFC級效率曲線

            接下來對用于3KW輸出功率,采用兩相交錯并聯(lián)半橋LLC的電路拓撲中的氮化鎵晶體管和碳化硅MOSFET在不同工作頻率下的計算得到的效率進行比較,計算中忽略掉了頻率上升導致磁性元件(包括諧振電感,主功率電感)損耗上升的影響。電路拓撲如圖13所示。氮化鎵晶體管選用的型號為IGOT60R070D1(25°C下的最大R DS(on) 為70mohm),共8顆。碳化硅MOSFET選用的型號為IMZA65R048M1H(25°C下的最大R DS(on) 為64mohm),共8顆。

            圖13:兩相交錯并聯(lián)LLC電路示意圖

            在50%負載(1500W),常溫工作環(huán)境下,不同工作頻率下的效率對比如圖14所示。在工作頻率較低(<100KHz)時,采用導通電阻相近的氮化鎵晶體管和碳化硅MOSFET效率相近,且都可以達到非常高(>99.2%)的效率,當工作頻率提升到300KHz后,氮化鎵由于其非常小的寄生參數(shù),開關(guān)損耗占總損耗的比例較低,因此其效率的降低很?。?.08%),而碳化硅MOSFET的效率會下降0.58%(99.28%-98.7%)。當工作頻率上升到500KHz后,兩者效率差距就很大了(1%)。當然如果對于一個實際的電路,考慮到頻率上升會引起磁性元件損耗的急劇上升,兩者的效率差異就不會這么大,但是效率變化的趨勢是一樣的。

            圖14:兩種功率器件在不同工作頻率下效率對比


            氮化鎵和碳化硅MOSFET應用建議

            根據(jù)第3章和第4章的論述,基于英飛凌科技有限公司的氮化鎵晶體管和碳化硅MOSFET產(chǎn)品,對于這兩種寬禁帶功率半導體的應用建議如下:

            (1) 所應用系統(tǒng)由于某些原因必須工作于超過200KHz以上的頻率,首選氮化鎵晶體管,次選碳化硅MOSFET;若工作頻率低于200KHz,兩者皆可使用;

            (2) 所應用系統(tǒng)要求輕載至半載效率極高,首選氮化鎵晶體管,次選碳化硅MOSFET;

            (3) 所應用系統(tǒng)工作最高環(huán)境溫度高,或散熱困難,或滿載要求效率極高,首選碳化硅MOSFET,次選氮化鎵晶體管;

            (4) 所應用系統(tǒng)噪聲干擾較大,特別是門極驅(qū)動干擾較大,首選碳化硅MOSFET,次選氮化鎵晶體管;

            (5) 所應用系統(tǒng)需要功率開關(guān)由較大的短路能力,首選碳化硅MOSFET;

            (6) 對于其他無特殊要求的應用系統(tǒng),此時根據(jù)散熱方式,功率密度,設(shè)計者對兩者的熟悉程度等因素來確定選擇哪種產(chǎn)品。


            總 結(jié)

            本文對近年來出現(xiàn)的寬禁帶功率半導體即氮化鎵晶體管和碳化硅MOSFET的結(jié)構(gòu)、特性、兩者的性能差異和應用建議進行了詳細的介紹。由于寬禁帶功率半導體有著許多硅材料半導體無法比擬的性能優(yōu)勢,因此工業(yè)界越來越多地趨向使用它們。

            而隨著業(yè)界對兩者的熟悉程度和應用經(jīng)驗越來越高,兩者的使用量會急劇上升,從而帶動兩者價格的下降,這又會反過來推動寬禁帶功率半導體被更大規(guī)模的使用,形成良性循環(huán)。因此盡早掌握和使用寬禁帶功率半導體對于提高產(chǎn)品的競爭力,提高產(chǎn)品知名度以及自身的能力都具有非常重要的意義。相信本文對于熟悉和使用寬禁帶功率半導體具有非常大的參考和借鑒意義。



            關(guān)鍵詞: 英飛凌 GaN SiC 電氣工程師

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉