Layout設(shè)計(jì)良好接地指導(dǎo)原則
具有低數(shù)字電流的混合信號(hào)IC的接地和去耦
本文引用地址:http://www.biyoush.com/article/201705/359876.htm敏感的模擬元件,例如放大器和基準(zhǔn)電壓源,必須參考和去耦至模擬接地層。具有低數(shù)字電流的ADC和DAC(和其他混合信號(hào)IC)一般應(yīng)視為模擬元件,同樣接地并去耦至模擬接地層。乍看之下,這一要求似乎有些矛盾,因?yàn)檗D(zhuǎn)換器具有模擬和數(shù)字接口,且通常有指定為模擬接地(AGND)和數(shù)字接地(DGND)的引腳。圖4有助于解釋這一兩難問題。
圖4. 具有低內(nèi)部數(shù)字電流的混合信號(hào)IC的正確接地
同時(shí)具有模擬和數(shù)字電路的IC(例如ADC或DAC)內(nèi)部,接地通常保持獨(dú)立,以免將數(shù)字信號(hào)耦合至模擬電路內(nèi)。圖4顯示了一個(gè)簡(jiǎn)單的轉(zhuǎn)換器模型。將芯片焊盤連接到封裝引腳難免產(chǎn)生線焊電感和電阻,IC設(shè)計(jì)人員對(duì)此是無(wú)能為力的,心中清楚即可??焖僮兓臄?shù)字電流在B點(diǎn)產(chǎn)生電壓,且必然會(huì)通過雜散電容CSTRAY耦合至模擬電路的A點(diǎn)。此外,IC封裝的每對(duì)相鄰引腳間約有0.2 pF的雜散電容,同樣無(wú)法避免!IC設(shè)計(jì)人員的任務(wù)是排除此影響讓芯片正常工作。不過,為了防止進(jìn)一步耦合,AGND和DGND應(yīng)通過最短的引線在外部連在一起,并接到模擬接地層。DGND連接內(nèi)的任何額外阻抗將在B點(diǎn)產(chǎn)生更多數(shù)字噪聲;繼而使更多數(shù)字噪聲通過雜散電容耦合至模擬電路。請(qǐng)注意,將DGND連接到數(shù)字接地層會(huì)在AGND和DGND引腳兩端施加 VNOISE ,帶來(lái)嚴(yán)重問題!
"DGND"名稱表示此引腳連接到IC的數(shù)字地,但并不意味著此引腳必須連接到系統(tǒng)的數(shù)字地??梢愿鼫?zhǔn)確地將其稱為IC的內(nèi)部"數(shù)字回路"。
這種安排確實(shí)可能給模擬接地層帶來(lái)少量數(shù)字噪聲,但這些電流非常小,只要確保轉(zhuǎn)換器輸出不會(huì)驅(qū)動(dòng)較大扇出(通常不會(huì)如此設(shè)計(jì))就能降至最低。將轉(zhuǎn)換器數(shù)字端口上的扇出降至最低(也意味著電流更低),還能讓轉(zhuǎn)換器邏輯轉(zhuǎn)換波形少受振鈴影響,盡可能減少數(shù)字開關(guān)電流,從而減少至轉(zhuǎn)換器模擬端口的耦合。通過插入小型有損鐵氧體磁珠,如圖4所示,邏輯電源引腳pin (VD) 可進(jìn)一步與模擬電源隔離。轉(zhuǎn)換器的內(nèi)部瞬態(tài)數(shù)字電流將在小環(huán)路內(nèi)流動(dòng),從VD 經(jīng)去耦電容到達(dá)DGND(此路徑用圖中紅線表示)。因此瞬態(tài)數(shù)字電流不會(huì)出現(xiàn)在外部模擬接地層上,而是局限于環(huán)路內(nèi)。VD引腳去耦電容應(yīng)盡可能靠近轉(zhuǎn)換器安裝,以便將寄生電感降至最低。去耦電容應(yīng)為低電感陶瓷型,通常介于0.01 μF (10 nF)和0.1 μF (100 nF)之間。
再?gòu)?qiáng)調(diào)一次,沒有任何一種接地方案適用于所有應(yīng)用。但是,通過了解各個(gè)選項(xiàng)和提前進(jìn)行規(guī)則,可以最大程度地減少問題。
小心處理ADC數(shù)字輸出
將數(shù)據(jù)緩沖器放置在轉(zhuǎn)換器旁不失為好辦法,可將數(shù)字輸出與數(shù)據(jù)總線噪聲隔離開(如圖4所示)。數(shù)據(jù)緩沖器也有助于將轉(zhuǎn)換器數(shù)字輸出上的負(fù)載降至最低,同時(shí)提供數(shù)字輸出與數(shù)據(jù)總線間的法拉第屏蔽(如圖5所示)。雖然很多轉(zhuǎn)換器具有三態(tài)輸出/輸入,但這些寄存器仍然在芯片上;它們使數(shù)據(jù)引腳信號(hào)能夠耦合到敏感區(qū)域,因而隔離緩沖區(qū)依然是一種良好的設(shè)計(jì)方式。某些情況下,甚至需要在模擬接地層上緊靠轉(zhuǎn)換器輸出提供額外的數(shù)據(jù)緩沖器,以提供更好的隔離。
圖5. 在輸出端使用緩沖器/鎖存器的高速ADC 具有對(duì)數(shù)字?jǐn)?shù)據(jù)總線噪聲的增強(qiáng)抗擾度。
ADC輸出與緩沖寄存器輸入間的串聯(lián)電阻(圖4中標(biāo)示為"R")有助于將數(shù)字瞬態(tài)電流降至最低,這些電流可能影響轉(zhuǎn)換器性能。電阻可將數(shù)字輸出驅(qū)動(dòng)器與緩沖寄存器輸入的電容隔離開。此外,由串聯(lián)電阻和緩沖寄存器輸入電容構(gòu)成的RC網(wǎng)絡(luò)用作低通濾波器,以減緩快速邊沿。
典型CMOS柵極與PCB走線和通孔結(jié)合在一起,將產(chǎn)生約10 pF的負(fù)載。如果無(wú)隔離電阻,1 V/ns的邏輯輸出壓擺率將產(chǎn)生10 mA的動(dòng)態(tài)電流:
驅(qū)動(dòng)10 pF的寄存器輸入電容時(shí),500 Ω串聯(lián)電阻可將瞬態(tài)輸出電流降至最低,并產(chǎn)生約11 ns的上升和下降時(shí)間:
圖6. 接地和去耦點(diǎn)
由于TTL寄存器具有較高輸入電容,可明顯增加動(dòng)態(tài)開關(guān)電流,因此應(yīng)避免使用
緩沖寄存器和其他數(shù)字電路應(yīng)接地并去耦至PC板的數(shù)字接地層。請(qǐng)注意,模擬與數(shù)字接地層間的任何噪聲均可降低轉(zhuǎn)換器數(shù)字接口上的噪聲裕量。由于數(shù)字噪聲抗擾度在數(shù)百或數(shù)千毫伏水平,因此一般不太可能有問題。模擬接地層噪聲通常不高,但如果數(shù)字接地層上的噪聲(相對(duì)于模擬接地層)超過數(shù)百毫伏,則應(yīng)采取措施減小數(shù)字接地層阻抗,以將數(shù)字噪聲裕量保持在可接受的水平。任何情況下,兩個(gè)接地層之間的電壓不得超過300 mV,否則IC可能受損。
最好提供針對(duì)模擬電路和數(shù)字電路的獨(dú)立電源。模擬電源應(yīng)當(dāng)用于為轉(zhuǎn)換器供電。如果轉(zhuǎn)換器具有指定的數(shù)字電源引腳(VD),應(yīng)采用獨(dú)立模擬電源供電,或者如圖6所示進(jìn)行濾波。所有轉(zhuǎn)換器電源引腳應(yīng)去耦至模擬接地層,所有邏輯電路電源引腳應(yīng)去耦至數(shù)字接地層,如圖6所示。如果數(shù)字電源相對(duì)安靜,則可以使用它為模擬電路供電,但要特別小心。
某些情況下,不可能將VD連接到模擬電源。一些高速IC可能采用+5 V電源為其模擬電路供電,而采用+3.3 V或更小電源為數(shù)字接口供電,以便與外部邏輯接口。這種情況下,IC的+3.3 V引腳應(yīng)直接去耦至模擬接地層。另外建議將鐵氧體磁珠與電源走線串聯(lián),以便將引腳連接到+3.3 V數(shù)字邏輯電源。
采樣時(shí)鐘產(chǎn)生電路應(yīng)與模擬電路同樣對(duì)待,也接地并深度去耦至模擬接地層。采樣時(shí)鐘上的相位噪聲會(huì)降低系統(tǒng)信噪比(SNR);我們將稍后對(duì)此進(jìn)行討論。
采樣時(shí)鐘考量
在高性能采樣數(shù)據(jù)系統(tǒng)中,應(yīng)使用低相位噪聲晶體振蕩器產(chǎn)生ADC(或DAC)采樣時(shí)鐘,因?yàn)椴蓸訒r(shí)鐘抖動(dòng)會(huì)調(diào)制模擬輸入/輸出信號(hào),并提高噪聲和失真底。采樣時(shí)鐘發(fā)生器應(yīng)與高噪聲數(shù)字電路隔離開,同時(shí)接地并去耦至模擬接地層,與處理運(yùn)算放大器和ADC一樣。
采樣時(shí)鐘抖動(dòng)對(duì)ADC信噪比(SNR)的影響可用以下公式4近似計(jì)算:
其中,f為模擬輸入頻率,SNR為完美無(wú)限分辨率ADC的SNR,此時(shí)唯一的噪聲源來(lái)自rms采樣時(shí)鐘抖動(dòng)tj。通過簡(jiǎn)單示例可知,如果tj = 50 ps (rms),f = 100 kHz,則SNR = 90 dB,相當(dāng)于約15位的動(dòng)態(tài)范圍。
應(yīng)注意,以上示例中的tj 實(shí)際上是外部時(shí)鐘抖動(dòng)和內(nèi)部ADC時(shí)鐘抖動(dòng)( 稱為孔徑抖動(dòng))的方和根(rss)值。不過,在大多數(shù)高性能ADC中,內(nèi)部孔徑抖動(dòng)與采樣時(shí)鐘上的抖動(dòng)相比可以忽略。
由于信噪比(SNR)降低主要是由于外部時(shí)鐘抖動(dòng)導(dǎo)致的,因而必須采取措施,使采樣時(shí)鐘盡量無(wú)噪聲,僅具有可能最低的相位抖動(dòng)。這就要求必須使用晶體振蕩器。有多家制造商提供小型晶體振蕩器,可產(chǎn)生低抖動(dòng)(小于5 ps rms)的CMOS兼容輸出。
理想情況下,采樣時(shí)鐘晶體振蕩器應(yīng)參考分離接地系統(tǒng)中的模擬接地層。但是,系統(tǒng)限制可能導(dǎo)致這一點(diǎn)無(wú)法實(shí)現(xiàn)。許多情況下,采樣時(shí)鐘必須從數(shù)字接地層上產(chǎn)生的更高頻率、多用途系統(tǒng)時(shí)鐘獲得,接著必須從數(shù)字接地層上的原點(diǎn)傳遞至模擬接地層上的ADC。兩層之間的接地噪聲直接添加到時(shí)鐘信號(hào),并產(chǎn)生過度抖動(dòng)。抖動(dòng)可造成信噪比降低,還會(huì)產(chǎn)生干擾諧波。
圖7. 從數(shù)模接地層進(jìn)行采樣時(shí)鐘分配
混合信號(hào)接地的困惑根源
大多數(shù)ADC、DAC和其他混合信號(hào)器件數(shù)據(jù)手冊(cè)是針對(duì)單個(gè)PCB討論接地,通常是制造商自己的評(píng)估板。將這些原理應(yīng)用于多卡或多ADC/DAC系統(tǒng)時(shí),就會(huì)讓人感覺困惑茫然。通常建議將PCB接地層分為模擬層和數(shù)字層,并將轉(zhuǎn)換器的AGND和DGND引腳連接在一起,并且在同一點(diǎn)連接模擬接地層和數(shù)字接地層,如圖8所示。這樣就基本在混合信號(hào)器件上產(chǎn)生了系統(tǒng)"星型"接地。所有高噪聲數(shù)字電流通過數(shù)字電源流入數(shù)字接地層,再返回?cái)?shù)字電源;與電路板敏感的模擬部分隔離開。系統(tǒng)星型接地結(jié)構(gòu)出現(xiàn)在混合信號(hào)器件中模擬和數(shù)字接地層連接在一起的位置。
該方法一般用于具有單個(gè)PCB和單個(gè)ADC/DAC的簡(jiǎn)單系統(tǒng),不適合多卡混合信號(hào)系統(tǒng)。在不同PCB(甚至在相同PCB上)上具有數(shù)個(gè)ADC或DAC的系統(tǒng)中,模擬和數(shù)字接地層在多個(gè)點(diǎn)連接,使得建立接地環(huán)路成為可能,而單點(diǎn)"星型"接地系統(tǒng)則不可能。鑒于以上原因,此接地方法不適用于多卡系統(tǒng),上述方法應(yīng)當(dāng)用于具有低數(shù)字電流的混合信號(hào)IC。
圖8. 混合信號(hào)IC接地:?jiǎn)蝹€(gè)PCB(典型評(píng)估/測(cè)試板)
針對(duì)高頻工作的接地
一般提倡電源和信號(hào)電流最好通過"接地層"返回,而且該層還可為轉(zhuǎn)換器、基準(zhǔn)電壓源和其它子電路提供參考節(jié)點(diǎn)。但是,即便廣泛使用接地層也不能保證交流電路具有高質(zhì)量接地參考。
圖9所示的簡(jiǎn)單電路采用兩層印刷電路板制造,頂層上有一個(gè)交直流電流源,其一端連到過孔1,另一端通過一條U形銅走線連到過孔2。兩個(gè)過孔均穿過電路板并連到接地層。理想情況下,頂端連接器以及過孔1和過孔2之間的接地回路中的阻抗為零,電流源上的電壓為零。
圖9. 電流源的原理圖和布局,PCB上布設(shè)U形走線,通過接地層返回
這個(gè)簡(jiǎn)單原理圖很難顯示出內(nèi)在的微妙之處,但了解電流如何在接地層中從過孔1流到過孔2,將有助于我們看清實(shí)際問題所在,并找到消除高頻布局接地噪聲的方法。
圖10. 圖9所示PCB的直流電流的流動(dòng)
圖10所示的直流電流的流動(dòng)方式,選取了接地層中從過孔1至過孔2的電阻最小的路徑。雖然會(huì)發(fā)生一些電流擴(kuò)散,但基本上不會(huì)有電流實(shí)質(zhì)性偏離這條路徑。相反,交流電流則選取阻抗最小的路徑,而這要取決于電感。
圖11. 磁力線和感性環(huán)路(右手法則)
電感與電流環(huán)路的面積成比例,二者之間的關(guān)系可以用圖11所示的右手法則和磁場(chǎng)來(lái)說(shuō)明。環(huán)路之內(nèi),沿著環(huán)路所有部分流動(dòng)的電流所產(chǎn)生的磁場(chǎng)相互增強(qiáng)。環(huán)路之外,不同部分所產(chǎn)生的磁場(chǎng)相互削弱。因此,磁場(chǎng)原則上被限制在環(huán)路以內(nèi)。環(huán)路越大則電感越大,這意味著:對(duì)于給定的電流水平,它儲(chǔ)存的磁能(Li2)更多,阻抗更高(XL = jωL),因而將在給定頻率產(chǎn)生更大電壓。
圖12. 接地層中不含電阻(左圖)和含電阻(右圖)的交流電流路徑
電流將在接地層中選取哪一條路徑呢?自然是阻抗最低的路徑??紤]U形表面引線和接地層所形成的環(huán)路,并忽略電阻,則高頻交流電流將沿著阻抗最低,即所圍面積最小的路徑流動(dòng)。
在圖中所示的例子中,面積最小的環(huán)路顯然是由U形頂部走線與其正下方的接地層部分所形成的環(huán)路。圖10顯示了直流電流路徑,圖12則顯示了大多數(shù)交流電流在接地層中選取的路徑,它所圍成的面積最小,位于U形頂部走線正下方。實(shí)際應(yīng)用中,接地層電阻會(huì)導(dǎo)致低中頻電流流向直接返回路徑與頂部導(dǎo)線正下方之間的某處。不過,即使頻率低至1 MHz或2 MHz,返回路徑也是接近頂部走線的下方。
小心接地層割裂
如果導(dǎo)線下方的接地層上有割裂,接地層返回電流必須環(huán)繞裂縫流動(dòng)。這會(huì)導(dǎo)致電路電感增加,而且電路也更容易受到外部場(chǎng)的影響。圖13顯示了這一情況,其中的導(dǎo)線A和導(dǎo)線B必須相互穿過。
當(dāng)割裂是為了使兩根垂直導(dǎo)線交叉時(shí),如果通過飛線將第二根信號(hào)線跨接在第一根信號(hào)線和接地層上方,則效果更佳。此時(shí),接地層用作兩個(gè)信號(hào)線之間的天然屏蔽體,而由于集膚效應(yīng),兩路地返回電流會(huì)在接地層的上下表面各自流動(dòng),互不干擾。
多層板能夠同時(shí)支持信號(hào)線交叉和連續(xù)接地層,而無(wú)需考慮線鏈路問題。雖然多層板價(jià)格較高,而且不如簡(jiǎn)單的雙面電路板調(diào)試方便,但是屏蔽效果更好,信號(hào)路由更佳。相關(guān)原理仍然保持不變,但布局布線選項(xiàng)更多。
對(duì)于高性能混合信號(hào)電路而言,使用至少具有一個(gè)連續(xù)接地層的雙面或多層PCB無(wú)疑是最成功的設(shè)計(jì)方法之一。通常,此類接地層的阻抗足夠低,允許系統(tǒng)的模擬和數(shù)字部分共用一個(gè)接地層。但是,這一點(diǎn)能否實(shí)現(xiàn),要取決于系統(tǒng)中的分辨率和帶寬要求以及數(shù)字噪聲量。
圖13. 接地層割裂導(dǎo)致電路電感增加,而且電路也更容易受到外部場(chǎng)的影響
其他例子也可以說(shuō)明這一點(diǎn)。高頻電流反饋型放大器對(duì)其反相輸入周圍的電容非常敏感。接地層旁的輸入走線可能具有能夠?qū)е聠栴}的那一類電容。要記住,電容是由兩個(gè)導(dǎo)體(走線和接地層)組成的,中間用絕緣體(板和可能的阻焊膜)隔離。在這一方面,接地層應(yīng)與輸入引腳分隔開,如圖14所示,它是AD8001高速電流反饋型放大器的評(píng)估板。小電容對(duì)電流反饋型放大器的影響如圖15所示。請(qǐng)注意輸出上的響鈴振蕩。
圖14. AD8001AR評(píng)估板—俯視圖(a)和仰視圖(b)
圖15. 10 pF反相輸入雜散電容對(duì) 放大器(AD8001)脈沖響應(yīng)的影響
接地總結(jié)
沒有任何一種接地方法能始終保證最佳性能。本文根據(jù)所考慮的特定混合信號(hào)器件特性提出了幾種可能的選項(xiàng)。在實(shí)施初始PC板布局時(shí),提供盡可能多的選項(xiàng)會(huì)很有幫助。
PC板必須至少有一層專用于接地層!初始電路板布局應(yīng)提供非重疊的模擬和數(shù)字接地層,如果需要,應(yīng)在數(shù)個(gè)位置提供焊盤和過孔,以便安裝背對(duì)背肖特基二極管或鐵氧體磁珠。此外,需要時(shí)可以使用跳線將模擬和數(shù)字接地層連接在一起。
一般而言,混合信號(hào)器件的AGND引腳應(yīng)始終連接到模擬接地層。具有內(nèi)部鎖相環(huán)(PLL)的DSP是一個(gè)例外,例如ADSP-21160 SHARC?處理器。PLL的接地引腳是標(biāo)記的AGND,但直接連接到DSP的數(shù)字接地層。
作者:Hank Zumbahlen
Hank Zumbahlen 1989 年進(jìn)入ADI 公司,最初擔(dān)任駐加州的現(xiàn)場(chǎng)應(yīng)用工程師。在過去數(shù)年中,他還作為高級(jí) 應(yīng)用工程師,參與了培訓(xùn)和研討會(huì)發(fā)展工作。此前,他在Signetics(飛 利浦)擔(dān)任類似職位,還曾在多家公司擔(dān)任設(shè)計(jì)工程師,主要涉足測(cè)試 和測(cè)量領(lǐng)域。Hank 擁有伊利諾伊大學(xué)的電子工程學(xué)士學(xué)位 (BSEE)。他 是《線性電路設(shè)計(jì)手冊(cè)》(Newnes-Elsevier 2008)的作者。
評(píng)論