使用基于FPGA的高速硬件在環(huán)仿真器進行電機控制器
介紹
本文引用地址:http://www.biyoush.com/article/192074.htm電機在現(xiàn)代生活中扮演著重要角色。出于對安全、成本及效率的考慮,工程師――尤其是混合電動力汽車(HEV)工程師――往往希望在特定的真實環(huán)境下通過仿真電機模型對電機控制器進行測試。
由于在經(jīng)濟及環(huán)境等方面展現(xiàn)出的優(yōu)勢,HEV受到了廣泛的關(guān)注,而電機正是HEV的核心部件。尤其是考慮到HEV的電機及電力電子器件體積大, 成本高; 在讓控制器去控制這些實際的部件前, 先用硬件在環(huán)仿真的方法來測試和驗證控制器的性能是非常必要的.
本文討論基于FPGA而設(shè)計的高速HIL仿真器來實現(xiàn)電機控制器測試。下圖為HIL測試系統(tǒng)。
電機驅(qū)動仿真器包括DC電壓源、逆變器橋路以及電機。我們支持永磁同步電機(PMSM)及無刷DC電機(BLDC).
現(xiàn)代電機驅(qū)動系統(tǒng)通常由脈沖寬度調(diào)制(PWM)所驅(qū)動。下圖描述了PWM的基本概念。
電機控制器將參考波形與三角載波相比較,從而確定門控制信號的狀態(tài)。
當時,上面一個電力電子器件的門極控制信號為高, 下面的器件的控制信號為低
當時,上面一個電力電子器件的門極控制信號為低, 下面的器件的控制信號為高
準確檢測門信號的開關(guān)時刻對仿真器正確產(chǎn)生仿真信號來說非常重要。否則仿真器可能產(chǎn)生抖動、非特征諧波等不準確結(jié)果,甚至變得不穩(wěn)定。下圖為PMSM電機驅(qū)動的電流波形仿真結(jié)果。
PWM頻率為10 kHz??梢钥吹?,50 kHz的仿真循環(huán)速率還不足以讓仿真器及時地檢測出開關(guān)時刻
因此不能獲得精確結(jié)果。檢測結(jié)果中包含了不想要的諧波分量,使結(jié)果與期望值偏差很大。而在200 kHz的循環(huán)速率下,檢測結(jié)果就好了很多。
為了獲得精確結(jié)果,仿真器的采樣間隔必須比控制器的PWM周期小很多。如此高循環(huán)速率的應(yīng)用使基于FPGA的方案成為理想選擇。我們的定點PMSM模型及定點BLDC模型均能在40個FPGA時鐘周期內(nèi)完成一次更新運算。
提示:有時,期望仿真循環(huán)速率可能超過模擬了I/O所能夠達到的速率。一般此時無需更新模擬I/O(扭矩輸入、電流輸出等)來匹配仿真循環(huán)率,用戶可使用多頻編程來保持數(shù)字I/O及仿真循環(huán)處于高速率,從而用于門信號開關(guān)時刻的精確檢測,而將模擬I/O設(shè)置于另一個循環(huán)狀態(tài),之后再通過FIFO在兩個不同頻率的循環(huán)間傳輸數(shù)據(jù)。
設(shè)計的前提假設(shè)
a. 電力電子器件的理想開關(guān)模型
將電力電子器件建模為理想開關(guān),當門信號為真(高)時,開關(guān)為理想的短路電路。當門信號為假(低)時,開關(guān)為理想的開路電路。理想開關(guān)模型非常適用于系統(tǒng)級仿真,此時我們不關(guān)心電力電子器件的寄生效應(yīng)。此外,理想開關(guān)模型可大幅提升仿真速度。
對于電力電子器件的熱損失,可以計算其等效電阻,并將此電阻值計入電機的總電阻。
評論