高線性度設(shè)計(jì)的CMOS調(diào)幅電路技術(shù)
可以看出,在所有管子處于飽和狀態(tài)時(shí),輸出電流與電源電壓無關(guān),表現(xiàn)出對電源較強(qiáng)的抑制,Vbias可以通過M17很容易形成電流鏡像,構(gòu)成偏置電路。
CMOS模擬乘法器電路結(jié)構(gòu)
圖4所示為核心電路模擬乘法器。電路中,M1~M8構(gòu)成Vy+、Vx-的輸入衰減器并實(shí)現(xiàn)電平位移,M23~M30構(gòu)成Vx+Vx-的輸入衰減器并實(shí)現(xiàn)電平位移;M9~M14構(gòu)成第一個(gè)線性壓控源耦對,M15~M20構(gòu)成第二個(gè)線性壓控源耦對;M21、M22分別提供源耦對的偏置電流。在電路工作中的輸出電流IO通過電阻R1、R2形成電壓雙端信號輸出。
模擬乘法器仿真結(jié)果
模擬乘法器的各項(xiàng)參數(shù)仿真如圖5、圖6、圖7所示。
圖5中,VY從-4V~+4V,步長為lV,對VX進(jìn)行步長為0.05V的DC掃描。從其直流特性曲線可以看出其線性輸入范圍為±4V,在±4V輸入范圍內(nèi),非線性誤差小于0.8%,乘法器運(yùn)算誤差小于l%;當(dāng)輸入范圍為±3V,非線性誤差小于0.4%,運(yùn)算誤差小于0.6%;隨著輸入范圍縮小,非線性誤差更小,運(yùn)算誤差也隨之減小。
圖6中上圖為輸入端VY、VX分別為500Hz的正弦波和輸入范圍為0~+4V的調(diào)幅三角波信號;下圖為經(jīng)過模擬乘法器乘法運(yùn)算后的輸出時(shí)域波形圖,其調(diào)制后的波形與輸入有著較好的線性度。
圖7為VX、VY均為3.5V(DC)時(shí)對Vy端的AC掃描。從其頻率特性曲線可以看出-3dB帶寬為8.76MHz。
單端輸出的運(yùn)算電路設(shè)計(jì)
由于R1和R2輸出端為電 流Io引起的電壓變化,要將電流輸出轉(zhuǎn)化成電壓輸出,需要一個(gè)實(shí)現(xiàn)減法的電路,由兩個(gè)運(yùn)算放大器構(gòu)成的差分比例運(yùn)算電路如圖8所示
。
該結(jié)構(gòu)由于輸入端為柵極輸入,所以低頻阻抗非常高,其輸出表達(dá)式為:
結(jié)語
該文提出了一種以模擬乘法器為核心電路的輸出信號與控制電壓成高線性度的集成電路設(shè)計(jì),并進(jìn)真,并實(shí)現(xiàn)了單端控制,單端輸出電路的控制電路設(shè)計(jì)。最后采用驪山微電子公司3μm P阱工藝模型參數(shù)庫對電路參數(shù)進(jìn)行Pspice模擬仿真,研究顯示該電路輸入線性范圍寬,輸出線性度高,值得參考和進(jìn)一步研究。
評論