車用毫米波雷達(dá)傳感器組網(wǎng)
1引言
本文引用地址:http://www.biyoush.com/article/154792.htm隨著人們對(duì)汽車駕駛過程當(dāng)中安全性、舒適性要求的不斷提高,汽車雷達(dá)被廣泛的應(yīng)用在汽車的自適應(yīng)巡航系統(tǒng),防碰撞系統(tǒng)以及駕駛支援系統(tǒng)中。其中,毫米波雷達(dá)因探測(cè)精度高、硬件體積小和不受惡劣天氣影響等優(yōu)點(diǎn)而被廣泛采用。但是傳統(tǒng)的單一雷達(dá)傳感器還是存在著諸如探測(cè)范圍小、可靠性低等缺點(diǎn)。特別是在復(fù)雜的行駛狀況下,并線、移線、轉(zhuǎn)彎、上下坡以及道路兩旁的靜態(tài)護(hù)欄、標(biāo)志牌、行人都會(huì)使得雷達(dá)對(duì)主目標(biāo)的識(shí)別十分困難,誤報(bào)率很高。
種雷達(dá)傳感器集成在一起構(gòu)成的一個(gè)網(wǎng)絡(luò)系統(tǒng)綜合了各種傳感器的優(yōu)勢(shì),實(shí)現(xiàn)了信息分析、綜合和平衡,利用數(shù)據(jù)間的冗余性和互補(bǔ)特性進(jìn)行容錯(cuò)處理,克服了單一傳感器可靠性低、有效探測(cè)范圍小等缺點(diǎn),有效地降低了雷達(dá)的誤報(bào)率。由此構(gòu)成的新的、高精度的傳感器網(wǎng)絡(luò),能夠極大地改善汽車?yán)走_(dá)網(wǎng)絡(luò)系統(tǒng)的性能.
2雷達(dá)網(wǎng)絡(luò)的構(gòu)成原理
圖1所示的雷達(dá)網(wǎng)絡(luò)由四個(gè)等距離分布在安全杠上的近距離毫米波雷達(dá)傳感器(Near distance sensor,NDS)構(gòu)成,每個(gè)雷達(dá)傳感器均采用FMCW體制。該傳感器網(wǎng)絡(luò)可在35米的范圍內(nèi)實(shí)現(xiàn)水平方位角為120°的覆蓋面。這種近距離、大覆蓋面的雷達(dá)傳感器網(wǎng)絡(luò)可以在車速不高,路面狀況比較復(fù)雜的情況下(例如市內(nèi)交通),監(jiān)控汽車前向較大范圍內(nèi)的目標(biāo)。如果需要遠(yuǎn)距離探測(cè),可以在安全杠中間增加一個(gè)遠(yuǎn)距離雷達(dá)傳感器。隨著77 GHz汽車?yán)走_(dá)傳感器技術(shù)的成熟,近/遠(yuǎn)距離雷達(dá)傳感器都傾向于采用77 GHz MMIC(毫米波集成電路)技術(shù)實(shí)現(xiàn),采用這種技術(shù)容易做出一體化的設(shè)計(jì)方案,使收發(fā)模塊的成本大為降低。
在圖2所示傳感器網(wǎng)絡(luò)系統(tǒng)框圖中[2],基于77GHz MMIC技術(shù)的雷達(dá)傳感器是構(gòu)成汽車?yán)走_(dá)網(wǎng)絡(luò)的前端關(guān)鍵硬件,后端的信息處理需要用數(shù)字信號(hào)處理器等高速運(yùn)算單元來完成。傳感器、數(shù)字信號(hào)處理單元以及數(shù)據(jù)融合決策系統(tǒng)之間采用以太網(wǎng)、高速串行連接的方式傳送數(shù)據(jù),以滿足高數(shù)據(jù)率的傳輸要求。數(shù)據(jù)融合系統(tǒng)采用分布式體系結(jié)構(gòu),即每個(gè)近距離傳感器對(duì)獲得的回波信號(hào)先進(jìn)行局部處理,然后送入融合中心進(jìn)行融合以獲得目標(biāo)的方位、速度信息。控制器是整個(gè)雷達(dá)網(wǎng)絡(luò)系統(tǒng)的最終決策機(jī)構(gòu),它負(fù)責(zé)識(shí)別目標(biāo)的距離和速度信息是否對(duì)行車安全構(gòu)成威脅,并通過聲光的形式提示駕駛員或者直接作用于車載控制系統(tǒng)加以調(diào)整。
圖2 雷達(dá)網(wǎng)絡(luò)系統(tǒng)結(jié)構(gòu)圖
2 汽車?yán)走_(dá)網(wǎng)絡(luò)關(guān)鍵技術(shù)解決方案
與單個(gè)雷達(dá)傳感器相比,多傳感器組網(wǎng)的優(yōu)勢(shì)在于測(cè)量精度高,誤報(bào)率低以及多目標(biāo)識(shí)別的優(yōu)越性能。測(cè)量精度高、誤報(bào)率低源于數(shù)據(jù)融合技術(shù),這就要求每個(gè)傳感器在時(shí)間、頻率上精確同步;多目標(biāo)識(shí)別取決于系統(tǒng)自身對(duì)目標(biāo)的識(shí)別分類能力。因此,在整個(gè)雷達(dá)網(wǎng)絡(luò)包括每個(gè)雷達(dá)傳感器的設(shè)計(jì)上都要圍繞著這兩點(diǎn)來進(jìn)行。
2.1 近距離傳感器設(shè)計(jì)
近距離雷達(dá)傳感器主要擔(dān)負(fù)著汽車前向35米內(nèi)的目標(biāo)探測(cè),是汽車?yán)走_(dá)網(wǎng)絡(luò)在復(fù)雜路況下發(fā)揮效能關(guān)鍵部分。近距離雷達(dá)傳感器主要包括射頻單元、接收機(jī)和各個(gè)傳感器的之間的精確時(shí)間同步控制[2]。在天線的設(shè)計(jì)上,既要符合所示的波束寬度的要求,同時(shí)又不能增大傳感器的體積。因此可以采用印刷體線性陣列天線。接收機(jī)主要由一些低頻元件、抗混疊濾波器和模數(shù)轉(zhuǎn)換裝置構(gòu)成。這些低頻元件所產(chǎn)生的噪聲可以淹沒微弱的回波信號(hào),是影響探測(cè)距離的主要因素之一,因此要盡可能的降低噪聲參數(shù)。此外,模數(shù)轉(zhuǎn)換的采樣頻率應(yīng)該依據(jù)近距離傳感器的性能參數(shù)來確定[2]。近距離傳感器的原理圖如圖3所示。
圖3近距離傳感器結(jié)構(gòu)圖
圖4 同步系統(tǒng)框圖
2.2 同步控制
雷達(dá)組網(wǎng)后,同樣是通過測(cè)量發(fā)射信號(hào)和回波信號(hào)之間的頻率差來確定目標(biāo)的位置。但不同于單個(gè)雷達(dá)探測(cè),汽車?yán)走_(dá)網(wǎng)絡(luò)測(cè)量目標(biāo)的距離和速度是通過對(duì)每個(gè)傳感器測(cè)得的目標(biāo)信息進(jìn)行數(shù)據(jù)融合而得到的。為了測(cè)量目標(biāo)距離以及產(chǎn)生一致的波形,發(fā)射機(jī)和接收機(jī)要有統(tǒng)一的時(shí)間標(biāo)準(zhǔn),這就是時(shí)間上的同步。為了能接收和放大回波信號(hào),雷達(dá)傳感器的發(fā)射機(jī)和接收機(jī)必須工作在相同的頻率,當(dāng)發(fā)射機(jī)頻率捷變時(shí),接收機(jī)本振要作相應(yīng)的變化,即要實(shí)現(xiàn)頻率上的同步。汽車?yán)走_(dá)網(wǎng)絡(luò)對(duì)傳感器之間的時(shí)間同步控制誤差要求在10ns內(nèi)。所以高精度時(shí)間頻率同步系統(tǒng)是汽車?yán)走_(dá)傳感器組網(wǎng)的關(guān)鍵技術(shù)。圖4給出了基于DDS同步時(shí)鐘源的配置 [3],各個(gè)收發(fā)單元上的DDS同步時(shí)鐘源的參考頻率源應(yīng)采用高穩(wěn)定度的原子鐘(如銣、銫原子鐘)。各收發(fā)單元的原子鐘要定期的用同一時(shí)間基準(zhǔn)來校準(zhǔn)。用作校準(zhǔn)的時(shí)間基準(zhǔn)的精度要更高一些,它們可以是GPS(導(dǎo)航星全球定位系統(tǒng)),羅蘭C或彩色電視發(fā)射臺(tái)發(fā)射的時(shí)間基準(zhǔn)信號(hào).
2.3汽車?yán)走_(dá)網(wǎng)絡(luò)的目標(biāo)分類算法
目標(biāo)分類系統(tǒng)的主要任務(wù)是針對(duì)目標(biāo)回波信號(hào)特征計(jì)算給定向量的分類關(guān)系,分類器定義了一組不同的目標(biāo)類別。分類器的工作可以分為研究階段和分類階段,在研究階段分類器對(duì)若干特征和經(jīng)過獨(dú)立標(biāo)記的特征向量進(jìn)行自動(dòng)分析;在分類階段,要對(duì)每個(gè)被檢測(cè)到的目標(biāo)生成特征向量。與此同時(shí),識(shí)別算法采用最大似然方法進(jìn)行判決,以判別特征向量屬于哪個(gè)類,如圖5所示。在汽車應(yīng)用中,由于分類任務(wù)很復(fù)雜,通常一個(gè)給定的向量需要考慮幾個(gè)特征,因而要采用多個(gè)分類器,其優(yōu)點(diǎn)是在研究階段能夠在一次迭代過程中評(píng)估某個(gè)特征對(duì)決策過程的影響,并自動(dòng)剔除對(duì)決策過程影響較小的項(xiàng)目。文獻(xiàn)[4]給出了基于汽車?yán)走_(dá)
評(píng)論