系統(tǒng)級ESD設計考慮
1、引言
隨著技術(shù)的發(fā)展,移動電子設備已成為我們生活和文化的重要組成部分。平板電腦和智能手機觸摸技術(shù)的應用,讓我們能夠與這些設備進行更多的互動。它構(gòu)成了一個完整的靜電放電 (ESD) 危險環(huán)境,即人體皮膚對設備產(chǎn)生的靜電放電。
例如,在使用消費類電子設備時,在用戶手指和平板電腦 USB 或者 HDMI 接口之間會發(fā)生 ESD,從而對平板電腦產(chǎn)生不可逆的損壞,例如:峰值待機電流或者永久性系統(tǒng)失效。
本文將為您解釋系統(tǒng)級 ESD 現(xiàn)象和器件級 ESD 現(xiàn)象之間的差異,并向您介紹一些提供 ESD 事件保護的系統(tǒng)級設計方法。
2、系統(tǒng)級ESD保護與器件級ESD保護的對比
IC 的 ESD 損壞可發(fā)生在任何時候,從裝配到板級焊接,再到終端用戶人機互動。ESD 相關(guān)損壞最早可追溯到半導體發(fā)展之初,但在 20 世紀 70 年代微芯片和薄柵氧化 FET 應用于高集成 IC 以后,它才成為一個普遍的問題。
所有 IC 都有一些嵌入式器件級 ESD 結(jié)構(gòu),用于在制造階段保護 IC 免受 ESD 事件的損壞。
這些事件可由三個不同的器件級模型進行模擬:人體模型 (HBM)、機器模型 (MM) 和帶電器件模型(CDM)。
HBM 用于模擬用戶操作引起的 ESD 事件,MM 用于模擬自動操作引起的 ESD 事件,而 CDM則模擬產(chǎn)品充電/放電所引起的 ESD 事件。這些模型都用于制造環(huán)境下的測試。在這種環(huán)境下,裝配、最終測試和板級焊接工作均在受控 ESD 環(huán)境下完成,從而減小暴露器件所承受的 ESD 應力。在制造環(huán)境下,IC 一般僅能承受 2-kV HBM 的 ESD 電擊,而最近出臺的小型器件靜電規(guī)定更是低至 500V。
盡管在廠房受控 ESD 環(huán)境下器件級模型通常已足夠,但在系統(tǒng)級測試中它們卻差得很遠。在終端用戶環(huán)境下,電壓和電流的ESD電擊強度要高得多。
因此,工業(yè)環(huán)境使用另一種方法進行系統(tǒng)級 ESD 測試,其由IEC 61000-4-2 標準定義。器件級 HBM、MM和CDM 測試的目的都是保證 IC 在制造過程中不受損壞;IEC 61000-4-2規(guī)定的系統(tǒng)級測試用于模擬現(xiàn)實世界中的終端用戶ESD事件。
IEC 規(guī)定了兩種系統(tǒng)級測試:接觸放電和非接觸放電。使用接觸放電方法時,測試模擬器電極與受測器件(DUT) 保持接觸。非接觸放電時,模擬器的帶電電極靠近 DUT,同 DUT 之間產(chǎn)生的火花促使放電。
表 1 列出了 IEC 61000-4-2 標準規(guī)定的每種方法的測試級別范圍。請注意,兩種方法的每種測試級別的放電強度并不相同。我們通常在4級(每種方法的最高官方標稱級別)以上對應力水平進行逐級測試,直到發(fā)生故障點為止。
3、TVS 如何保護系統(tǒng)免受 ESD 事件的損害
與 ESD 保護集成結(jié)構(gòu)不同,IEC 61000-4-2 標準規(guī)定的模型通常會使用離散式獨立瞬態(tài)電壓抑制二極管,也即瞬態(tài)電壓抑制器 (TVS)。相比電源管理或者微控制器單元中集成的 ESD 保護結(jié)構(gòu),獨立 TVS 成本更低,并且可以靠近系統(tǒng) I/O 連接器放置,如圖 2 所示。
共有兩種 TVS:雙向和單向(參見圖 3)。TI TPD1E10B06 便是一個雙向 TVS例子,它可以放置在一條通用數(shù)據(jù)線路上,用于系統(tǒng)級 ESD 保護。
正常工作狀態(tài)下,雙向和單向 TVS 都為一個開路,并在 ESD 事件發(fā)生時接地。在雙向 TVS 情況下,只要 D1 和 D2 都不進入其擊穿區(qū)域,I/O 線路電壓信號會在接地電壓上下擺動。
當 ESD 電擊(正或者負)擊中 I/O 線路時,一個二極管變?yōu)檎蚱?,而另一個擊穿,從而形成一條通路,ESD 能量立即沿這條通路接地。在單向 TVS 情況下,只要 D2 和 Z1 都不進入其擊穿區(qū)域,則電壓信號會在接地電壓以上擺動。
當正ESD電擊擊中I/O線路時,D1變?yōu)檎蚱?,而Z1 先于 D2進入其擊穿區(qū)域;通過 D1 和 Z1 形成一條接地通路,從而讓 ESD 能量得到耗散。
當發(fā)生負 ESD 事件時,D2 變?yōu)檎蚱?,ESD能量通過 D2接地通路得到耗散。由于 D1 和 D2 尺寸可以更小、寄生電容更少,單向二極管可用于許多高速應用;D1 和 D2 可以“隱藏”更大的齊納二極管 Z1(大尺寸的原因是處理擊穿區(qū)域更多的電流)。
4、系統(tǒng)級 ESD 保護的關(guān)鍵器件參數(shù)
圖 4 顯示了 TVS 二極管電流與電壓特性的對比情況。盡管 TVS 是一種簡單的結(jié)構(gòu),但是在系統(tǒng)級 ESD 保護設計過程中仍然需要注意幾個重要的參數(shù)。
這些參數(shù)包括擊穿電壓 VBR、動態(tài)電阻 RDYN、鉗位電壓VCL 和電容。
4.1、擊穿電壓VBR
正確選擇 TVS 的第一步是研究擊穿電壓 (VBR)。
例如,如果受保護 I/O 線路的最大工作電壓 VRWM 為5V,則在達到該最大電壓以前 TVS 不應進入其擊穿區(qū)域。通常,TVS 產(chǎn)品說明書會包括具體漏電流的VRWM,它讓我們能夠更加容易地選擇正確的 TVS。否則,我們可以選擇一個 VBR(min) 大于受保護I/O 線路 VRWM 幾伏的 TVS。
4.2、動態(tài)電阻
ESD 是一種極速事件,也就是幾納秒的事情。在如此短的時間內(nèi),TVS 傳導接地通路不會立即建立起來,并且在通路中存在一定的電阻。這種電阻被稱作動態(tài)電阻 (RDYN),如圖 5 所示。
理想情況下,RDYN 應為零,這樣 I/O 線路電壓才能盡可能地接近 VBR;但是,這是不可能的事情。
RDYN 的最新工業(yè)標準值為 1 ? 或者 1 ? 以下。利用傳輸線路脈沖測量技術(shù)可以得到 RDYN。使用這種技術(shù)時,通過 TVS 釋放電壓,然后測量相應的電流。在得到不同電壓的許多數(shù)據(jù)點以后,便可以繪制出如圖6一樣的 IV 曲線,而斜線便為 RDYN。圖 6 顯示了 TPD1E10B06 的 RDYN,其典型值為 ~0.3 ?。
4.3、鉗位電壓
由于ESD是一種極速瞬態(tài)事件,I/O 線路的電壓不能立即得到箝制。如圖 7 所示,根據(jù) IEC 61000-4-2 標準,數(shù)千伏電壓被箝制為數(shù)十伏。
如方程式 1 所示,RDYN 越小,鉗位性能也就越好:
其中,IPP 為 ESD 事件期間的峰值脈沖電流,而 Iparasitic 為通過 TVS 接地來自連接器的線路寄生電感。
把鉗位電壓波形下面的區(qū)域想像成能量。鉗位性能越好,受保護ESD敏感型器件在ESD事件中受到損壞的機率也就越小。由于鉗位電壓很小,一些TVS可承受IEC模型的8kV接觸式放電,但是“受保護”器件卻被損壞了。
電容
在正常工作狀態(tài)下,TVS為一個開路,并具有寄生電容分流接地。設計人員應在信號鏈帶寬預算中考慮到這種電容。
結(jié)論
由于 IC 工藝技術(shù)節(jié)點變得越來越小,它也越來越容易受到 ESD 損壞的影響,不管是在制造過程還是在終端用戶使用環(huán)境下。器件級 ESD 保護并不足以在系統(tǒng)層面為 IC 提供保護。我們應在系統(tǒng)級設計中使用獨立 TVS。在選擇某個 TVS 時,設計人員應注意一些重要參數(shù),例如:VBR、RDYN、VCL 和電容等。
*博客內(nèi)容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點,如有侵權(quán)請聯(lián)系工作人員刪除。