應(yīng)用于智能手機(jī)的的高性能、小封裝邏輯電平轉(zhuǎn)換方案
自動(dòng)感測(cè)雙向邏輯電平轉(zhuǎn)換器(推挽型輸出)的工作原理是:?jiǎn)⒂?EN)引腳為低電平時(shí),轉(zhuǎn)換器處于待機(jī)狀態(tài);EN引腳為高電平、I/O電平不變時(shí),轉(zhuǎn)換器處于穩(wěn)態(tài);EN引腳為高電平、I/O電平變化時(shí),轉(zhuǎn)換器檢測(cè)到變化,并產(chǎn)生脈沖,I/O藉P溝道MOSFET(PMOS)上拉至更快。典型的自動(dòng)感測(cè)方向雙向邏輯電平轉(zhuǎn)換器(推挽型輸出)有如安森美半導(dǎo)體的NLSX3012MUTAG、NLSX3013FCT1G、NLSX3013BFCT1G、NLSX4014MUTAG和NLSX3018MUTAG等。這類(lèi)轉(zhuǎn)換器的常見(jiàn)應(yīng)用包括通用異步收發(fā)器(UART)、USB端口、4線SPI端口和3線SPI端口等。
本文引用地址:http://www.biyoush.com/article/95923.htm用于漏極開(kāi)路應(yīng)用(如I2C)的自動(dòng)感測(cè)雙向邏輯電平轉(zhuǎn)換器同樣包含3個(gè)狀態(tài):EN引腳為高電平、NMOS導(dǎo)通時(shí),處于工作狀態(tài),輸入端I/O電平下拉至地,即輸入低電平;EN引腳為高電平、NMOS處于高阻態(tài)時(shí),處于工作狀態(tài),輸出端I/O電平上拉至VCC,即輸入高電平;EN引腳為低電平時(shí),轉(zhuǎn)換器處于待機(jī)狀態(tài)。典型的用于漏極開(kāi)路應(yīng)用(如I2C)的自動(dòng)感測(cè)雙向邏輯電平轉(zhuǎn)換器有如安森美半導(dǎo)體的NLSX4373MUTAG、NLSX4348FCT1G和NSLX4378BFCT1G等。這類(lèi)轉(zhuǎn)換器的常見(jiàn)應(yīng)用包括I2C總線、用戶識(shí)別模塊(SIM)卡、單線(1-Wire)總線、顯示模塊、安全數(shù)字輸入輸出(SDIO)卡等。
上述幾種雙電源邏輯電平轉(zhuǎn)換器中,不帶方向控制引腳的自動(dòng)感測(cè)轉(zhuǎn)換器和帶方向控制引腳的轉(zhuǎn)換器各有其優(yōu)劣勢(shì)。自動(dòng)感測(cè)轉(zhuǎn)換器的優(yōu)勢(shì)主要體現(xiàn)在將微控制器的I/O線路減至最少,是用于異步通信的簡(jiǎn)單方案,劣勢(shì)則是成本高于及帶寬低于帶方向控制引腳的轉(zhuǎn)換器。帶方向控制引腳的轉(zhuǎn)換器優(yōu)勢(shì)是作為大宗商品元件,成本低,是用于存儲(chǔ)器映射I/O的簡(jiǎn)單方案,劣勢(shì)則是微控制器引腳數(shù)量多。
而在不帶方向控制引腳的自動(dòng)感測(cè)轉(zhuǎn)換器中,也有集成方案(如NLSX3373)與分立方案(如NTZD3154N)之區(qū)別。集成方案NLSX3373為單顆IC,估計(jì)占用的印制電路板(PCB)空間僅為2.6 mm2;分立方案NTZD3154N采用雙MOSFET及4顆01005封裝(即0402)的電阻,估計(jì)占用的PCB總空間為3.3 mm2。集成方案提供低功率待機(jī)模式,而分立方案則不提供高阻抗/待機(jī)模式。這兩種不同方案的低壓工作特性、帶寬及電路特性也各不相同。
安森美半導(dǎo)體雙電源電平轉(zhuǎn)換器規(guī)范及要求
安森美半導(dǎo)體的雙電源邏輯電平轉(zhuǎn)換器與競(jìng)爭(zhēng)器件相比,體現(xiàn)出多方面的優(yōu)勢(shì)。這些優(yōu)勢(shì)包括:更寬的電壓轉(zhuǎn)換范圍、更低的靜態(tài)功率消耗和/或支持更高的數(shù)據(jù)率。如安森美半導(dǎo)體帶推挽輸出的自動(dòng)感測(cè)雙向轉(zhuǎn)換器NLSX3013的雙電源轉(zhuǎn)換范圍分別1.3 V至4.5 V和0.9 V至VCC – 0.4 V,性能接近的競(jìng)爭(zhēng)器件則分別為1.65 V至3.6 V和1.2 V至VCC – 0.4 V;兩者支持的數(shù)據(jù)率分別為140 Mbps和100 Mbps。更具體的比較參見(jiàn)表2。
評(píng)論