在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 設計應用 > 射頻/微波PCB的信號注入"法門"

            射頻/微波PCB的信號注入"法門"

            作者: 時間:2015-06-18 來源:網(wǎng)絡 收藏

              將高頻能量從同軸連接器傳 遞到印刷電路板()的過程通常被稱為信號注入,它的特征難以描述。能量傳遞的效率會因電路結構不同而差異懸殊。 材料及其厚度和工作頻率范圍等因素,以及連接器設計及其與電路材料的相互作用都會影響性能。通過對不同信號注入設置的了解,以及對一些微波信號注入方 法的優(yōu)化案例的回顧,性能可以得到提升。

            本文引用地址:http://www.biyoush.com/article/275944.htm

              實現(xiàn)有效的信號注入與設計相關,一般寬帶優(yōu)化比窄帶更有挑戰(zhàn)性。通常高頻注入隨著頻率升高而更加困難,同時也可能隨電路材料的厚度增加,電路結構的復雜性增加而有更多問題。

              信號注入設計與優(yōu)化

              從同軸電纜和連接器到微帶 的信號注入如圖1 所示。穿過同軸電纜和連接器的電磁(EM)場分布呈圓柱形,而PCB 內(nèi)的EM 場分布則是平面或矩形。從一種傳播介質(zhì)進入另一種介質(zhì),場分布會改變以適應新環(huán)境,從而產(chǎn)生異常。改變?nèi)Q于介質(zhì)類型;例如,信號注入是從同軸電纜和連接 器到微帶、接地共面波導(GCPW),還是帶線。同軸電纜連接器的類型也起著重要作用。

              

             

              圖1. 從同軸電纜和連接器到微帶的信號注入。

              優(yōu)化涉及幾個變量。了解同軸電纜/ 連接器內(nèi)EM 場分布很有用,但還必須將接地回路視為傳播介質(zhì)的一部分。它對實現(xiàn)從一種傳播介質(zhì)到另一種傳播介質(zhì)的平穩(wěn)阻抗轉變通常是有幫助的。了解阻抗不連續(xù)點處的容 抗和感抗讓我們能夠理解電路表現(xiàn)。如果能夠進行三維(3D)EM 仿真,就可以觀察到電流密度分布。此外,最好將與輻射損耗有關的實際情況也考慮其中。

              雖然信號發(fā)射連接器和PCB 之間的接地回路可能看上去不成問題,從連接器到PCB的接地回路非常連續(xù),但并不總是如此。連接器的金屬和PCB 之間通常存在著很小的表面電阻。連接不同部件的焊店和這些部件的金屬的電導率也有很小的差異。在RF 和微波頻率較低時,這些小差異的影響通常較小,但是頻率較高時對性能的影響很大。地回流路徑的實際長度會影響利用給定的連接器和PCB 組合能夠?qū)崿F(xiàn)的傳輸質(zhì)量。

              如圖2a 所示,在電磁波能量從連接器引腳傳遞到微帶PCB 的信號導線時,回到連接器外殼的接地回路對于厚微帶傳輸線來說可能會太長。采用介電常數(shù)較高的PCB材料會增加接地回路的電長度,從而使問題惡化。通路延 長會引發(fā)具有頻率相關性的問題,進而產(chǎn)生局部的相速和電容差異。二者都與變換區(qū)內(nèi)的阻抗相關,并且會對其產(chǎn)生影響,從而產(chǎn)生回波損耗差異。理想情況下,接 地回路的長度應最小化,使得信號注入?yún)^(qū)不存在阻抗異常。請注意,圖2a 所示之連接器的接地點只存在于電路底部,而這是最糟糕的情況。很多RF 連接器的接地引腳與信號在同一層。這種情況下,PCB 上也會設計接地焊盤在那里。

              圖2b 展示了接地共面波導轉微帶信號注入電路,在這里,電路的主體是微帶,但信號注入?yún)^(qū)是接地共面波導(GCPW)。共面發(fā)射微帶很有用,因為它能夠?qū)⒔拥鼗芈?最小化,并且還具有其它有用特性。如果使用信號導線兩邊均有接地引腳的連接器,那么接地引腳間距對性能有重大影響。已經(jīng)證明該距離影響頻率響應。

              

             

              圖2. 厚微帶傳輸線電路和較長的到連接器的地回流路徑(a)接地共面波導轉微帶的信號注入電路(b)。

              在利用基于羅杰斯公司10mil 厚RO4350B 層壓板的共面波導轉微帶微帶進行實驗時,使用了共面波導口接地間距不同,但其他部分類似的連接器(見圖3)。連接器A 的接地間隔約為0.030",而連接器B 的接地間隔為0.064"。這兩種情況下,連接器發(fā)射到同一電路上。

              

             

              圖3. 利用具有不同接地間隔的類似端口的同軸連接器測試共面波導轉微帶電路。

              x 軸表示頻率,每格5 GHz。微波頻率較低(< 5 GHz)時,性能相當,但頻率高于15 GHz 時,接地間隔較大的電路性能變差。連接器類似,雖然這2 種型號的引腳直徑稍有不同,連接器B 的引腳直徑較大并且設計用于較厚的PCB 材料。這也可能會導致性能差異。


            上一頁 1 2 3 下一頁

            關鍵詞: 射頻 PCB

            評論


            相關推薦

            技術專區(qū)

            關閉