EMI/EMC設(shè)計(jì)PCB被動(dòng)組件的隱藏行為和特性解析
傳統(tǒng)上,EMC一直被視為“黑色魔術(shù)(black magic)”。其實(shí),EMC是可以藉由數(shù)學(xué)公式來理解的。不過,縱使有數(shù)學(xué)分析方法可以利用,但那些數(shù)學(xué)方程式對(duì)實(shí)際的EMC電路設(shè)計(jì)而言,仍然太過復(fù) 雜了。幸運(yùn)的是,在大多數(shù)的實(shí)務(wù)工作中,工程師并不需要完全理解那些復(fù)雜的數(shù)學(xué)公式和存在于EMC規(guī)范中的學(xué)理依據(jù),只要藉由簡(jiǎn)單的數(shù)學(xué)模型,就能夠明白 要如何達(dá)到EMC的要求。
本文引用地址:http://www.biyoush.com/article/274259.htm本文藉由簡(jiǎn)單的數(shù)學(xué)公式和電磁理論,來說明在印刷電路板(PCB)上被動(dòng)組件(passive component)的隱藏行為和特性,這些都是工程師想讓所設(shè)計(jì)的電子產(chǎn)品通過EMC標(biāo)準(zhǔn)時(shí),事先所必須具備的基本知識(shí)。
導(dǎo)線和PCB走線
導(dǎo)線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經(jīng)常成為射頻能量的最佳發(fā)射器(亦即,EMI的來源)。每一種組件都 具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導(dǎo)線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會(huì)影響導(dǎo)線的阻抗大小,而且對(duì)頻率很敏感。依據(jù) LC的值(決定自共振頻率)和PCB走線的長(zhǎng)度,在某組件和PCB走線之間,可以產(chǎn)生自共振(self-resonance),因此,形成一根有效率的輻 射天線。
在低頻時(shí),導(dǎo)線大致上只具有電阻的特性。但在高頻時(shí),導(dǎo)線就具有電感的特性。因?yàn)樽兂筛哳l后,會(huì)造成阻抗大小的變化,進(jìn)而改變導(dǎo)線或PCB走線與接地之間的EMC設(shè)計(jì),這時(shí)必需使用接地面(ground plane)和接地網(wǎng)格(ground grid)。
導(dǎo)線和PCB走線的最主要差別只在于,導(dǎo)線是圓形的,走線是長(zhǎng)方形的。導(dǎo)線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時(shí),此阻抗定義為Z = R + j XL j2πfL,沒有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時(shí),感抗大于電阻,此時(shí)導(dǎo)線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導(dǎo)線或走線應(yīng)該視為電感,不能再看成電阻,而且 可以是射頻天線。
大多數(shù)天線的長(zhǎng)度是等于某一特定頻率的1/4或1/2波長(zhǎng)(λ)。因此在EMC的規(guī)范中,不容許導(dǎo)線或走線在某一特定頻率的λ/20以下工作,因?yàn)檫@會(huì)使它突然地變成一根高效能的天線。電感和電容會(huì)造成電路的諧振,此現(xiàn)象是不會(huì)在它們的規(guī)格書中記載的。
例如:假設(shè)有一根10公分的走線,R = 57 mΩ,8 nH/cm,所以電感值總共是80 nH。在100 kHz時(shí),可以得到感抗50 mΩ。當(dāng)頻率超過100 kHz以上時(shí),此走線將變成電感,它的電阻值可以忽略不計(jì)。因此,此10公分的走線將在頻率超過150 MHz時(shí),將形成一根有效率的輻射天線。因?yàn)樵?50 MHz時(shí),其波長(zhǎng)λ= 2公尺,所以λ/20 = 10公分 = 走線的長(zhǎng)度;若頻率大于150 MHz,其波長(zhǎng)λ將變小,其1/4λ或1/2λ值將接近于走線的長(zhǎng)度(10公分),于是逐漸形成一根完美的天線。
電阻
電阻是在PCB上最常見到的組件。電阻的材質(zhì)(碳合成、碳膜、云母、繞線型…等)限制了頻率響應(yīng)的作用和EMC的效果。繞線型電阻并不適合于高頻應(yīng)用,因?yàn)樵趯?dǎo)線內(nèi)存在著過多的電感。碳膜電阻雖然包含有電感,但有時(shí)適合于高頻應(yīng)用,因?yàn)樗慕幽_之電感值并不大。
一般人常忽略的是,電阻的封裝大小和寄生電容。寄生電容存在于電阻的兩個(gè)終端之間,它們?cè)跇O高頻時(shí),會(huì)對(duì)正常的電路特性造成破壞,尤其是頻率達(dá)到GHz時(shí)。不過,對(duì)大多數(shù)的應(yīng)用電路而言,在電阻接腳之間的寄生電容不會(huì)比接腳電感來得重要。
當(dāng)電阻承受超高電壓極限(overvoltage stress)考驗(yàn)時(shí),必須注意電阻的變化。如果在電阻上發(fā)生了“靜電釋放(ESD)”現(xiàn)象,則會(huì)發(fā)生有趣的事。如果電阻是表面黏著(surface mount)組件,此電阻很可能會(huì)被電弧打穿。如果電阻具有接腳,ESD會(huì)發(fā)現(xiàn)此電阻的高電阻(和高電感)路徑,并避免進(jìn)入被此電阻所保護(hù)的電路。其實(shí), 真正的保護(hù)者是此電阻所隱藏的電感和電容特性。
固定的直流電壓和電流(bulk)之功能。真正單純的電容會(huì)維持它的電容值,直 到達(dá)到自共振頻率。超過此自共振頻率,電容特性會(huì)變成像電感一樣。這可以由公式:Xc=1/2πfC來說明,Xc是容抗(單位是Ω)。例如:10μf的電 解電容,在10 kHz時(shí),容抗是1.6Ω;在100 MHz時(shí),降到160μΩ。因此在100MHz時(shí),存在著短路(short circuit)效應(yīng),這對(duì)EMC而言是很理想的。但是,電解電容的電氣參數(shù):等效串聯(lián)電感(equivalent series inductance;ESL)和等效串聯(lián)電阻(equivalent series resistance;ESR),將會(huì)限制此電容只能在頻率1MHz以下工作。
電容的使用也和接腳電感與體積結(jié)構(gòu)有關(guān),這些因素決定了寄生電感的數(shù)目和大小。寄生電感存在于電容的焊線之間,它們使電容在超過自共振頻率以上時(shí),產(chǎn)生和電感一樣的行為,電容因此失去了原先設(shè)定的功能。
電感
電感是用來控制PCB內(nèi)的EMI。對(duì)電感而言,它的感抗是和頻率成正比的。這可以由公式:XL = 2πfL來說明,XL是感抗(單位是Ω)。例如:一個(gè)理想的10 mH電感,在10 kHz時(shí),感抗是628Ω;在100 MHz時(shí),增加到6.2MΩ。因此在100 MHz時(shí),此電感可以視為開路(open circuit)。在100MHz時(shí),若讓一個(gè)訊號(hào)通過此電感,將會(huì)造成此訊號(hào)質(zhì)量的下降(這是從時(shí)域來觀察)。和電容一樣,此電感的電氣參數(shù)(線圈之間 的寄生電容)限制了此電感只能在頻率1 MHz以下工作。
問題是,在高頻時(shí),若不能使用電感,那要使用什么呢?答案是,應(yīng)該使用“鐵粉珠(ferrite bead)”。鐵粉材料是鐵鎂或鐵鎳合金,這些材料具有高的導(dǎo)磁系數(shù)(permeability),在高頻和高阻抗下,電感內(nèi)線圈之間的電容值會(huì)最小。鐵 粉珠通常只適用于高頻電路,因?yàn)樵诘皖l時(shí),它們基本上是保有電感的完整特性(包含有電阻和抗性分量),因此會(huì)造成線路上的些微損失。在高頻時(shí),它基本上只 具有抗性分量(jωL),并且抗性分量會(huì)隨著頻率上升而增加,如附圖一所示。實(shí)際上,鐵粉珠是射頻能量的高頻衰減器。
其實(shí),可以將鐵粉珠視為一個(gè)電阻并聯(lián)一個(gè)電感。在低頻時(shí),電阻被電感“短路”,電流流往電感;在高頻時(shí),電感的高感抗迫使電流流向電阻。
本質(zhì)上,鐵粉珠是一種“耗散裝置(dissipative device)”,它會(huì)將高頻能量轉(zhuǎn)換成熱能。因此,在效能上,它只能被當(dāng)成電阻來解釋,而不是電感。
變壓器
變壓器通常存在于電源供應(yīng)器中,此外,它可以用來對(duì)數(shù)據(jù)訊號(hào)、I/O連結(jié)、供電接口做絕緣。根據(jù)變壓器種類和應(yīng)用的不同,在一次側(cè) (primary)和二次側(cè)(secondary)線圈之間,可能有屏蔽物(shield)存在。此屏蔽物連接到一個(gè)接地的參考源,是用來防止此兩組線圈 之間的電容耦合。
EMC相關(guān)文章:EMC是什么意思
低通濾波器相關(guān)文章:低通濾波器原理
電容傳感器相關(guān)文章:電容傳感器原理 雙絞線傳輸器相關(guān)文章:雙絞線傳輸器原理 衰減器相關(guān)文章:衰減器原理
評(píng)論