在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 嵌入式系統(tǒng) > 牛人業(yè)話 > 這樣講你就懂了!大牛給你介紹《信號與系統(tǒng)》

            這樣講你就懂了!大牛給你介紹《信號與系統(tǒng)》

            作者: 時間:2014-12-09 來源:網(wǎng)絡 收藏
            編者按:很多朋友和我一樣,工科電子類專業(yè),學了一堆信號方面的課,什么都沒學懂,背了公式考了試,然后畢業(yè)了。不是我們學的不好,是因為教材不好,老師講的也不好。我們來看看另一種教學方法。

              4. 如何設計系統(tǒng)?

            本文引用地址:http://www.biyoush.com/article/266592.htm

              設計物理上的系統(tǒng)函數(shù)(連續(xù)的或離散的狀態(tài)),有輸入,有輸出,而中間的處理過程和具體的物理實現(xiàn)相關,不是這們課關心的重點(電子電路設計?)。信號與 系統(tǒng)歸根到底就是為了特定的需求來設計一個系統(tǒng)函數(shù)。設計出系統(tǒng)函數(shù)的前提是把輸入和輸出都用函數(shù)來表示(例如sin(t))。分析的方法就是把一個復雜 的信號分解為若干個簡單的信號累加,具體的過程就是一大堆微積分的東西,具體的數(shù)學運算不是這門課的中心思想。

              那么系統(tǒng)有那些種類呢?

              (a) 按功能分類: 調(diào)制解調(diào)(信號抽樣和重構),疊加,濾波,功放,相位調(diào)整,信號時鐘同步,負反饋鎖相環(huán),以及若干子系統(tǒng)組成的一個更為復雜的系統(tǒng)----你可以畫出系統(tǒng) 流程圖,是不是很接近編寫程序的邏輯流程圖? 確實在符號的空間里它們沒有區(qū)別。還有就是離散狀態(tài)的數(shù)字信號處理(后續(xù)課程)。

              (b) 按系統(tǒng)類別劃分,無狀態(tài)系統(tǒng),有限狀態(tài)機,線性系統(tǒng)等。而物理層的連續(xù)系統(tǒng)函數(shù),是一種復雜的線性系統(tǒng)。

              5. 最好的教材?

              符號系統(tǒng)的核心是集合論,不是微積分,沒有集合論構造出來的系統(tǒng),實現(xiàn)用到的微積分便毫無意義----你甚至不知道運算了半天到底是要作什么。以計算機的觀點來學習信號與系統(tǒng),最好的教材之一就是<>, 作者是UC Berkeley的Edward A.Lee and Pravin Varaiya----先定義再實現(xiàn),符合人類的思維習慣。國內(nèi)的教材通篇都是數(shù)學推導,就是不肯說這些推導是為了什么目的來做的,用來得到什么,建設什 么,防止什么;不去從認識論和需求上討論,通篇都是看不出目的的方法論,本末倒置了。

              第三課 抽樣定理是干什么的

              1. 舉個例子,打電話的時候,電話機發(fā)出的信號是PAM脈沖調(diào)幅,在電話線路上傳的不是話音,而是話音通過信道編碼轉(zhuǎn)換后的脈沖序列,在收端恢復語音波形。那 么對于連續(xù)的說話人語音信號,如何轉(zhuǎn)化成為一些列脈沖才能保證基本不失真,可以傳輸呢? 很明顯,我們想到的就是取樣,每隔M毫秒對話音采樣一次看看電信號振幅,把振幅轉(zhuǎn)換為脈沖編碼,傳輸出去,在收端按某種規(guī)則重新生成語言。

              那么,問題來了,每M毫秒采樣一次,M多小是足夠的? 在收端怎么才能恢復語言波形呢?

              對于第一個問題,我們考慮,語音信號是個時間頻率信號(所以對應的F變換就表示時間頻率)把語音信號分解為若干個不同頻率的單音混合體(周期函數(shù)的復利葉 級數(shù)展開,非周期的區(qū)間函數(shù),可以看成補齊以后的周期信號展開,效果一樣),對于最高頻率的信號分量,如果抽樣方式能否保證恢復這個分量,那么其他的低頻 率分量也就能通過抽樣的方式使得信息得以保存。如果人的聲音高頻限制在3000Hz,那么高頻分量我們看成sin(3000t),這個sin函數(shù)要通過抽 樣保存信息,可以看為: 對于一個周期,波峰采樣一次,波谷采樣一次,也就是采樣頻率是最高頻率分量的2倍(奈奎斯特抽樣定理),我們就可以通過采樣信號無損的表示原始的模擬連續(xù) 信號。這兩個信號一一對應,互相等價。

              對于第二個問題,在收端,怎么從脈沖序列(梳裝波形)恢復模擬的連續(xù)信號呢? 首先,我們已經(jīng)肯定了在頻率域上面的脈沖序列已經(jīng)包含了全部信息,但是原始信息只在某一個頻率以下存在,怎么做? 我們讓輸入脈沖信號I通過一個設備X,輸出信號為原始的語音O,那么I(*)X=O,這里(*)表示。時域的特性不好分析,那么在頻率域 F(I)*F(X)=F(O)相乘關系,這下就很明顯了,只要F(X)是一個理想的,低通濾波器就可以了(在F域畫出來就是一個方框),它在時間域是一個 鐘型函數(shù)(由于包含時間軸的負數(shù)部分,所以實際中不存在),做出這樣的一個信號處理設備,我們就可以通過輸入的脈沖序列得到幾乎理想的原始的語音。在實際 應用中,我們的抽樣頻率通常是奈奎斯特頻率再多一點,3k赫茲的語音信號,抽樣標準是8k赫茲。

              2. 再舉一個例子,對于數(shù)字圖像,抽樣定理對應于圖片的分辨率----抽樣密度越大,圖片的分辨率越高,也就越清晰。如果我們的抽樣頻率不夠,信息就會發(fā)生混 疊----網(wǎng)上有一幅圖片,近視眼戴眼鏡看到的是愛因斯坦,摘掉眼睛看到的是夢露----因為不帶眼睛,分辨率不夠(抽樣頻率太低),高頻分量失真被混入 了低頻分量,才造成了一個視覺陷阱。在這里,圖像的F變化,對應的是空間頻率。

              話說回來了,直接在信道上傳原始語音信號不好嗎? 模擬信號沒有抗干擾能力,沒有糾錯能力,抽樣得到的信號,有了數(shù)字特性,傳輸性能更佳。

              什么信號不能理想抽樣? 時域有跳變,頻域無窮寬,例如方波信號。如果用有限帶寬的抽樣信號表示它,相當于復利葉級數(shù)取了部分和,而這個部分和在恢復原始信號的時候,在不可導的點上面會有毛刺,也叫吉布斯現(xiàn)象。

              3. 為什么傅立葉想出了這么一個級數(shù)來? 這個源于西方哲學和科學的基本思想: 正交分析方法。例如研究一個立體形狀,我們使用x,y,z三個互相正交的軸: 任何一個軸在其他軸上面的投影都是0。這樣的話,一個物體的3視圖就可以完全表達它的形狀。同理,信號怎么分解和分析呢? 用互相正交的三角函數(shù)分量的無限和:這就是傅立葉的貢獻。

              入門第四課 的復數(shù) 小波

              說的廣義一點,"復數(shù)"是一個"概念",不是一種客觀存在。

              什么是"概念"? 一張紙有幾個面? 兩個,這里"面"是一個概念,一個主觀對客觀存在的認知,就像"大"和"小"的概念一樣,只對人的意識有意義,對客觀存在本身沒有意義(康德: 純粹理性的批判)。把紙條的兩邊轉(zhuǎn)一下相連接,變成"莫比烏斯圈",這個紙條就只剩下一個"面"了。概念是對客觀世界的加工,反映到意識中的東西。

              數(shù)的概念是這樣被推廣的: 什么數(shù)x使得x^2=-1? 實數(shù)軸顯然不行,(-1)*(-1)=1。那么如果存在一個抽象空間,它既包括真實世界的實數(shù),也能包括想象出來的x^2=-1,那么我們稱這個想象空間 為"復數(shù)域"。那么實數(shù)的運算法則就是復數(shù)域的一個特例。為什么1*(-1)=-1? +-符號在復數(shù)域里面代表方向,-1就是"向后,轉(zhuǎn)!"這樣的命令,一個1在圓周運動180度以后變成了-1,這里,直線的數(shù)軸和圓周旋轉(zhuǎn),在復數(shù)的空間 里面被統(tǒng)一了。

              因此,(-1)*(-1)=1可以解釋為"向后轉(zhuǎn)"+"向后轉(zhuǎn)"=回到原地。那么復數(shù)域如何表示x^2=-1呢? 很簡單,"向左轉(zhuǎn)","向左轉(zhuǎn)"兩次相當于"向后轉(zhuǎn)"。由于單軸的實數(shù)域(直線)不包含這樣的元素,所以復數(shù)域必須由兩個正交的數(shù)軸表示--平面。很明 顯,我們可以得到復數(shù)域乘法的一個特性,就是結果的絕對值為兩個復數(shù)絕對值相乘,旋轉(zhuǎn)的角度=兩個復數(shù)的旋轉(zhuǎn)角度相加。高中時代我們就學習了迪莫弗定理。 為什么有這樣的乘法性質(zhì)? 不是因為復數(shù)域恰好具有這樣的乘法性質(zhì)(性質(zhì)決定認識),而是發(fā)明復數(shù)域的人就是根據(jù)這樣的需求去弄出了這么一個復數(shù)域(認識決定性質(zhì)),是一種主觀唯心 主義的研究方法。為了構造x^2=-1,我們必須考慮把乘法看為兩個元素構成的集合: 乘積和角度旋轉(zhuǎn)。

              因為三角函數(shù)可以看為圓周運動的一種投影,所以,在復數(shù)域,三角函數(shù)和乘法運算(指數(shù))被統(tǒng)一了。我們從實數(shù)域的傅立葉級數(shù)展開入手,立刻可以得到形式更 簡單的,復數(shù)域的,和實數(shù)域一一對應的傅立葉復數(shù)級數(shù)。因為復數(shù)域形式簡單,所以研究起來方便----雖然自然界不存在復數(shù),但是由于和實數(shù)域的級數(shù)一一 對應,我們做個反映射就能得到有物理意義的結果。

              那么,那個令人難以理解的轉(zhuǎn)換公式是什么含義呢? 我們可以看一下它和復數(shù)域傅立葉級數(shù)的關系。什么是微積分,就是先微分,再積分,傅立葉級數(shù)已經(jīng)作了無限微分了,對應無數(shù)個離散的頻率分量沖擊信號的和。 要解決非周期信號的分析問題,想象這個非周期信號也是一個周期信號: 只是周期為無窮大,各頻率分量無窮小而已(否則積分的結果就是無窮)。那么我們看到傅立葉級數(shù),每個分量常數(shù)的求解過程,積分的區(qū)間就是從T變成了正負無 窮大。而由于每個頻率分量的常數(shù)無窮小,那么讓每個分量都去除以f,就得到有值的數(shù)----所以周期函數(shù)的傅立葉變換對應一堆脈沖函數(shù)。同理,各個頻率分 量之間無限的接近,因為f很小,級數(shù)中的f,2f,3f之間幾乎是挨著的,最后挨到了一起,和一樣,這個復數(shù)頻率空間的級數(shù)求和最終可以變成一個積分 式:傅立葉級數(shù)變成了傅立葉變換。注意有個概念的變化:離散的頻率,每個頻率都有一個"權"值,而連續(xù)的F域,每個頻率的加權值都是無窮小(面積=0), 只有一個頻率范圍內(nèi)的"頻譜"才對應一定的能量積分。頻率點變成了頻譜的線。

              因此傅立葉變換求出來的是一個通常是一個連續(xù)函數(shù),是復數(shù)頻率域上面的可以畫出圖像的東西? 那個根號2Pai又是什么? 它只是為了保證正變換反變換回來以后,信號不變。我們可以讓正變換除以2,讓反變換除以Pi,怎么都行。

            模擬信號相關文章:什么是模擬信號


            c語言相關文章:c語言教程


            低通濾波器相關文章:低通濾波器原理


            負離子發(fā)生器相關文章:負離子發(fā)生器原理
            絕對值編碼器相關文章:絕對值編碼器原理
            脈沖點火器相關文章:脈沖點火器原理
            離子色譜儀相關文章:離子色譜儀原理
            鎖相環(huán)相關文章:鎖相環(huán)原理
            全息投影相關文章:全息投影原理

            上一頁 1 2 下一頁

            關鍵詞: 傅立葉變換 卷積

            評論


            相關推薦

            技術專區(qū)

            關閉