Giga ADC 介紹及雜散分析(上)
當(dāng)一個折疊輸出信號不是在線性區(qū)域范圍內(nèi)時,另一個折疊輸出信號恰好在線性區(qū)域內(nèi),反之亦然。這種方法可以推廣到相位差更小的一組折疊信號的情況,以減小非線性區(qū)域的影響。直至,相鄰折疊信號的過零點只相距一個量化單位(LSB)時,每個與折疊電路連接的比較器只需檢出過零點。此時,折疊結(jié)構(gòu)ADC不再要求折疊信號的線性區(qū)域范圍,只要求過零點的精度。
在折疊電路設(shè)計中,一級折疊電路折疊率不宜過高,這主要是因為,如果一級折疊率過高,那么這么多輸出通過長的走線連接到一起輸出給下一級比較器,寄生電容對于后級的影響變得不可忽略。在TI的Giga ADC中,一般采用多級折疊電路級連的方式,例如,如果要實現(xiàn)一個折疊率為9的電路,采用了兩級折疊級連,每級的折疊率是3,如figure10所示。
2.3.3內(nèi)插電路
直接利用折疊電路來產(chǎn)生所有2N個過零點,ADC的功耗與輸入電容都很大。通常的解決辦法是采用折疊-內(nèi)插結(jié)構(gòu),如Figure11所示。每兩個折疊電路的輸出之間連接一個插值電阻串,利用插值電阻的分壓作用得到兩個折疊電壓信號之間的插值電壓。每個插值節(jié)點作為輸出,插值的數(shù)目稱為內(nèi)插率I;Figure11是當(dāng)I=4的內(nèi)插結(jié)果,兩側(cè)為原始的由折疊電路產(chǎn)生的折疊信號,夾在其間的3個信號是被節(jié)省的、由內(nèi)插電路產(chǎn)生的折疊信號。這樣,通過4倍的內(nèi)插,每4個折疊信號可以節(jié)省3個折疊電路。
通過折疊內(nèi)插電路的波形如下圖所示:
2.3.4平均電路
前面提到,影響電路精度的主要誤差是差分信號的偏置誤差。降低差分電路的偏置誤差可以增加晶體管的面積。但由于在折疊電路中,偏置誤差不僅僅來自于差分電路,折疊電路中其它飽和支路的輸出電流也增加了整個電路的偏置誤差,簡單的增加電路晶體管面積并不能有效的降低誤差。由于各個放大電路的偏置誤差是不相關(guān)的,這里采用了迭代的技術(shù),使某一輸出節(jié)點的偏置誤差不僅僅取決于本身放大電路,還和相鄰其它并行放大電路輸出有關(guān),偏置誤差通過放大電路輸出的迭代而隨機(jī)化,降低了整個電路的偏置誤差。
2.4校準(zhǔn)電路
前面提到的各種設(shè)計電路有效的提高了ADC的線性性能和帶寬,但在TI Giga ADC,仍然集成了校準(zhǔn)電路,用以進(jìn)一步優(yōu)化ADC的性能。這部分校準(zhǔn)電路包括27個高精度校準(zhǔn)電壓,采用輪詢的方式依次輸入到輸入級的開關(guān),并根據(jù)校準(zhǔn)信號的輸出結(jié)果通過DAC調(diào)整預(yù)放大電路的偏置電流,達(dá)到校準(zhǔn)修正的結(jié)果。
通過Figure5可以看到,輸入級的MUX開關(guān),采保電路,輸入buffer的偏置誤差以及折疊電路的偏置誤差等包括在校準(zhǔn)環(huán)路里,通過校準(zhǔn)不僅僅提高了放大電路的線性,而且提高了系統(tǒng)在interleave模式下兩路ADC之間的一致性,改善了系統(tǒng)的雜散性能。
Giga ADC 介紹及雜散分析(下)
評論