高速光通信用的光電子器件的進(jìn)展
人類社會(huì)的信息化建設(shè)正在加速進(jìn)行,即使是在全球經(jīng)濟(jì)發(fā)展不景氣的情況下,通信和信息行業(yè)也十分紅火。光通信呈現(xiàn)著蓬勃發(fā)展的新局面,正朝著高速、超高速光纖傳輸、超大容量的WDM、OTDM以及全光網(wǎng)等方向發(fā)展。但這些系統(tǒng)的實(shí)現(xiàn)還依賴于相應(yīng)的光電子技術(shù)的進(jìn)步。一系列的光電子器件將在未來(lái)的通信網(wǎng)中起著重要的作用,因而各國(guó)從事光電子器件的研究者都在奮力開發(fā)各種高性能器件,研究其材料及工藝,并取得了豐碩成果。
1.DFB激光器/EA調(diào)制器集成光源
DFB激光器/EA調(diào)制器集成光源具有低啁啾、低驅(qū)動(dòng)電壓(Vpp:2~3v,LiNbO3調(diào)制器的Vpp:4~5v)、低功耗、容易與激光器或其它波導(dǎo)器件集成、耦合損耗低、調(diào)制效率高、且體積小(一般長(zhǎng)0.2cm左右,而LiNbO3調(diào)制器長(zhǎng)8cm)等優(yōu)點(diǎn),特別是含有增益耦合的DFB激光器因?yàn)榫哂袆?dòng)態(tài)單模和調(diào)制啁啾小等特性,有助于減小集成器件線寬,而且它還具有較強(qiáng)的抗端面反射能力,從而減小因端面反射引起的啁啾,改善集成器件的啁啾特性等。該光源現(xiàn)已廣泛用于2.5Gbit/s、10Gbit/s等高速傳輸系統(tǒng),其中2.5Gbit/s DFB激光器/EA調(diào)制器集成器件已成為干線光纖通信系統(tǒng)的主要光源。10Gbit/s、20Gbit/s和40Gbit/s集成器件也正大量用于干線傳輸或傳輸實(shí)驗(yàn)。表1列出了國(guó)外研制的主要集成器件的性能。
近幾年來(lái)對(duì)集成有EA調(diào)制器的DFB激光器集成光源的研究主要集中在提高調(diào)制速率和改善其性能等方面。MQW EA調(diào)制器的調(diào)制速度取決于它的電容。縮短調(diào)制器的長(zhǎng)度是降低電容的簡(jiǎn)單而有效的方法,但如此卻使消光比減小,不利于應(yīng)用。為了解決這一矛盾,將EA調(diào)制器中MQW的阱數(shù)從8個(gè)增加到14個(gè),調(diào)制器的長(zhǎng)度從250μm縮短到100μm,調(diào)制器的消光特性就會(huì)明顯改善(見圖1)。
根據(jù)以上原則,用低壓MOVPE技術(shù)生長(zhǎng)制成的DFB激光器和EA調(diào)制器集成芯片,并隱埋在Fe摻雜的InP中,以減小電容并形成臺(tái)面,使調(diào)制器和激光器之間有隔離槽,并把兩者對(duì)接,長(zhǎng)度分別為90~250μm和450μm。在此器件中,采用了對(duì)接結(jié)構(gòu)和Fe摻雜的隱埋結(jié)構(gòu),前者可使激光器和調(diào)制器的結(jié)構(gòu)分別最佳,可得到95%以上的高耦合效率,后者具有高功率和高可靠等優(yōu)點(diǎn)。
將此集成光源用于40Gbit/s的傳輸實(shí)驗(yàn)時(shí),會(huì)發(fā)現(xiàn):當(dāng)DFB激光器的注入電流為80mA(Ith為8mA)時(shí),模塊的輸出光功率為+5dBm,波長(zhǎng)為1.551μm,SMSR為48dB。3dB帶寬大于30GHz,調(diào)制器動(dòng)態(tài)消光比為10dB;在激光器注入電流為100mA、調(diào)制器加-1V的反偏壓、50℃的環(huán)境中進(jìn)行高溫工作試驗(yàn),經(jīng)5200小時(shí)后光輸出功率下降小于20%。
2.波長(zhǎng)可調(diào)光源
波長(zhǎng)可調(diào)光源是WDM網(wǎng)絡(luò)系統(tǒng)、光測(cè)試系統(tǒng)和快速波長(zhǎng)交換等系統(tǒng)的重要光源。目前研究較多的有使用AWG和EDFA的波長(zhǎng)可調(diào)AWG環(huán)形激光器、多電極DFB波長(zhǎng)可調(diào)激光器和DFB波長(zhǎng)可調(diào)激光器等,波長(zhǎng)可調(diào)范圍一般都可達(dá)到5~10nm,最高可達(dá)100nm。 Alcatel公司生產(chǎn)的集成BRS(隱埋脊波導(dǎo))光源工作時(shí)可保證波長(zhǎng)偏移小于0.02nm/年。
能實(shí)現(xiàn)寬調(diào)諧的激光器主要有3種,即超周期結(jié)構(gòu)光柵形DBR(SSGDBR)激光器、取樣光柵耦合器反射器(GCSR)激光器和取樣光柵DBR(SGDBR)激光器。它們的CW調(diào)諧范圍都大于40nm,最大可達(dá)100nm。其中SGDBR和SSGDBR很容易與調(diào)制器集成。美加州大學(xué)在OFC’99上報(bào)道了EA調(diào)制器與寬調(diào)諧激光器的集成。激光器采用SGDBR結(jié)構(gòu),該集成光源的特性為:Ith為20mA,當(dāng)注入電流為75mA時(shí)輸出功率1.2mw,CW可調(diào)范圍為41nm,可產(chǎn)生51個(gè)不同的波長(zhǎng)信道,信道間隔100GHz,在整個(gè)調(diào)諧范圍內(nèi)SMSR>35dB,前后鏡面的最大調(diào)諧電流分別為20.5和23.5mA,當(dāng)偏壓為-4.0V時(shí)所有波長(zhǎng)上的消光比都大于22dB。
為了降低WDM光源的成本,日本NEC公司在一塊晶片上制成了具有不同波長(zhǎng)的DFB激光器/調(diào)制器集成光源。該器件的制作工藝有兩大改進(jìn),一是采用了最近研制成的電場(chǎng)-大小-變化的電子束光刻技術(shù),它能將光柵周期控制在0.0012nm范圍內(nèi);二是窄條選擇的MOVPE技術(shù),可以控制每一信道上激光器有源層和調(diào)制器吸收層的帶隙波長(zhǎng)。激光器為MQW結(jié)構(gòu)。所制成的集成器件在1.523μm~1.585μm的波長(zhǎng)范圍內(nèi)有40個(gè)信道,間隔為200GHz,標(biāo)準(zhǔn)偏差0.39nm。具有很均勻的激射特性和調(diào)制特性,閾值電流10mA,-2V時(shí)的消光比為20dB,SMSR大于35dB,注入電流100mA時(shí)輸出光功率大于4mw,3dB調(diào)制帶寬為3.8GHz。該器件經(jīng)2.5Gbit/s、600km的光纖傳輸后的功率代價(jià)小于1dB。
3.多波長(zhǎng)光源
目前研究較多的多波長(zhǎng)光源主要有如下幾種:使用波導(dǎo)光柵的集成光學(xué)型多波長(zhǎng)光源;由N×N波導(dǎo)光柵路由器和半導(dǎo)體放大器陣列集成的多頻激光器;激光器陣列與其它光學(xué)元件集成的多波長(zhǎng)光源。其中第一種多波長(zhǎng)光源是由混合集成于Si基片上的UV寫入波導(dǎo)光柵和SS-LD構(gòu)成。優(yōu)點(diǎn)是:LD和波導(dǎo)之間直接耦合,無(wú)需耦合透鏡,便于大批量生產(chǎn);此外,振蕩波長(zhǎng)的溫度依賴性取決于SiO2波導(dǎo),因此其平均熱系數(shù)為半導(dǎo)體LD的1/8。同時(shí),結(jié)構(gòu)簡(jiǎn)單,是用于WDM系統(tǒng)的有希望的光源。
由多條波導(dǎo)光柵路由器和放大器陣列集成的多頻激光器與DFB激光器陣列之間的主要差別是:MFL的光諧振腔比較長(zhǎng),接近于F-P模間隔(約3GHz);DFB激光器陣列中單信道的調(diào)制速率比MFL的高,而且其芯片尺寸比MFL的小得多;但DFB激光器的制作工藝比MFL的復(fù)雜,且還難于制成很多的信道波長(zhǎng)。這兩種多波長(zhǎng)光源各有利弊,在實(shí)際應(yīng)用中則根據(jù)經(jīng)濟(jì)性和性能的要求折衷考慮。一般來(lái)說,系統(tǒng)中信道數(shù)不太多時(shí)則用DFB陣列光源,若系統(tǒng)中的信道數(shù)多時(shí)則宜用多頻激光器。
為了解決DFB陣列激光器中因電、熱干擾引起的波長(zhǎng)漂移,日本NTT開發(fā)了一種Si PLC平臺(tái)技術(shù),在此技術(shù)中,利用兩步裝配(assemby)法進(jìn)行多晶片混合集成。此多波長(zhǎng)光源由信道間隔為200GHz的8個(gè)DFB-LD和MMI耦合器(用作光功率合成器)組成。用AuSn焊料通過兩步組裝法將LD芯片一齊鍵合在Si臺(tái)階上,Si臺(tái)階起熱沉的作用。制成的模塊的性能為:各信道的Ith約10mA,當(dāng)注入電流為100mA時(shí)光纖輸出功率為0.5mw。對(duì)由熱干擾引起的振蕩波長(zhǎng)的漂移進(jìn)行了測(cè)量,結(jié)果是振蕩波長(zhǎng)僅漂移了0.051nm(即7GHz)。
在OFC’99上,美國(guó)朗訊Bell實(shí)驗(yàn)室報(bào)道了安裝在Si臺(tái)階PLC上的混合集成的DFB激光器陣列光源,它由光斑尺寸變換的1.55μm DFB激光器陣列和光斑尺寸變換的半導(dǎo)體光放大器/EA調(diào)制器組成。模塊中還有監(jiān)控Pin PD、波導(dǎo)合成器以及球透鏡等。一起裝在Si PLC上,并經(jīng)由Si-Si波導(dǎo)進(jìn)行光連接。利用可產(chǎn)生低耦合損耗的雙波導(dǎo)光斑尺寸變換的新技術(shù)和MOCVD等工藝制作。該集成模塊的最小信道間隔為50GHz,恒定偏置條件下的峰值功率在+1.6~-6.2dBm之間,調(diào)制器的小信號(hào)帶寬為7GHz,在2.6Vp-p時(shí)所有信道的射頻消光比大于13dB,利用該器件可實(shí)現(xiàn)16ch×2.5Gbit/s的傳輸。
4.光接收器件
光接收器件是高速大容量傳輸系統(tǒng)中必不可少的器件,對(duì)其研究從未間斷,其中日本尤為突出,速率為2.5Gbit/s、10Gbit/s的接收器件已實(shí)用化,最高研制速率為100Gbit/s。低成本、塑料光纖LAN用和光接入系統(tǒng)用的2.5Gbit/s的收、發(fā)模塊等也已研制成功,已可滿足高速大容量干線系統(tǒng)、中短距離等傳輸系統(tǒng)的需求。
日本NEC公司研制成可用于光接入系統(tǒng)、干線系統(tǒng)的波導(dǎo)型光電二級(jí)管。與常規(guī)表面受光的光電二極管相比,波導(dǎo)型光電二極管具有適于表面安裝、成本低、在低偏壓情況下量子效率高和在高速響應(yīng)時(shí)可實(shí)現(xiàn)高量子效率等優(yōu)點(diǎn)。該器件的特性是:波長(zhǎng)1.55μm時(shí),外量子效率為77%;Pn結(jié)電容非常小,約30fF;3dB截止頻率為41GHz,用于40Gbit/s光接收機(jī)中具有足夠的帶寬。
日本電氣公司研制的InGaAs四元量子阱臺(tái)面型及平面型SL(超晶格)-APD可用于10Gbit/s系統(tǒng)。P-InAlGaAs光吸收層、n-InGaAs/InAlAs超晶格倍增層及P+-InP緩沖層為其基本結(jié)構(gòu)。臺(tái)面型器件的特點(diǎn)是采用聚酰亞胺鈍化工藝,容易操作;而平面型器件是采用Ti離子注入保護(hù)環(huán)結(jié)構(gòu),特點(diǎn)是可靠性高,但它的暗電流比臺(tái)面型器件的稍大。
為了使器件結(jié)構(gòu)最佳,需考慮的因素如下:10Gbit/s系統(tǒng)要求所用器件的增益帶寬乘積在120GHz以上,根據(jù)超晶格倍增層厚度與增益帶寬乘積的關(guān)系,倍增層厚度應(yīng)小于0.25μm。由于倍增層薄,倍增上升時(shí)間縮短而得到高速特性。但在實(shí)際的器件中,當(dāng)倍增層薄時(shí),隨著倍增電場(chǎng)強(qiáng)度增加,隧道電流明顯增加,因此,倍增層厚度不能小于0.23μm;根據(jù)光吸收層厚度與量子效率η和最小接收靈敏度的關(guān)系,為了提高量子效率和接收靈敏度,光吸收層的厚度應(yīng)在1~1.5μm之間;根據(jù) P+-InP緩沖層的載流子濃度與GB乘積的關(guān)系,為了抑制由InP引起的有效離化率比的干擾,10Gbit/s系統(tǒng)用的器件要求其P濃度大于5×1017cm-3(層厚70nm以下),InP緩沖層的作用是控制InGaAs光吸收層的外加電場(chǎng)。因?yàn)樽罴淹饧与妶?chǎng)為50kv/cm~100kv/cm,所以濃度必須嚴(yán)格控制在±2%以內(nèi)。根據(jù)以上因素,采用能精確控制層厚的生長(zhǎng)技術(shù)和自擴(kuò)散小的Be作P型摻雜劑制作的聚酰亞胺臺(tái)面型和Ti離子注入保護(hù)環(huán)結(jié)構(gòu)的平面型MQW SL-APD的特性列于表2。
近期NTT報(bào)道的一種UTC-PD的3dB頻帶為152GHz,是目前長(zhǎng)波長(zhǎng)PD中的最高水平,具有可接收100Gbit/s光信號(hào)的性能。該器件具有高速、高飽和輸出、低偏壓工作等優(yōu)點(diǎn),用作40Gbit/s光接收端時(shí)不使用寬帶電放大器便可得到良好的誤碼特性。該器件的用途很廣,與其它器件一起可構(gòu)成光解復(fù)用器、波長(zhǎng)轉(zhuǎn)換器、光變換器等,將它作為光驅(qū)動(dòng)器與其它光電器件集成在一起可用于經(jīng)濟(jì)、穩(wěn)定的超高速信號(hào)處理。
5.集成模塊
為滿足大容量接入網(wǎng)、寬帶業(yè)務(wù)等對(duì)低成本、小型器件的需求,CC Media研究所研制成以PLC技術(shù)為基礎(chǔ)的高速收發(fā)模塊。此模塊的特點(diǎn)是使用了PLC、SL-APD和一塊3R-IC芯片,可減小體積、降低成本。模塊中的SL-APD在2.5Gbit/s時(shí)接收靈敏度高,量子效率為60%,部分光柵波導(dǎo)激光器在2.5Gbit/s下行傳輸時(shí)可產(chǎn)生大于+6dBm的輸出。。為了保持低功耗,IC電源為3.3V,芯片用Si雙極性工藝制成,fT=40GHz,體積為2×3mm,最小接收靈敏度為-24.2dBm,時(shí)鐘抖動(dòng)為6.4ps,功耗低至450mw,O/E轉(zhuǎn)換總效率(Y支損耗除外)為34%。
用于LAN的1.3μm波段,2.5Gbit/s的光收、發(fā)模塊也已研制成功,根據(jù)高耦合效率、高速、低成本的原則進(jìn)行設(shè)計(jì)。塑料光纖與LD的耦合損耗為1.0dB,與PIN-PD的耦合損耗為0.3dB。發(fā)送模塊的消光比為8dB,輸出光功率為-2dBm;接收模塊在BER=10-10時(shí)的最小光接收功率為-21.2dBm,消光比為20dB。
HP公司的商用混合集成模塊速率為2.5Gbit/s,采用雙纖方案,連同連接器的成本可能比單纖雙向所用的光濾波器便宜。發(fā)送采用單模光纖,接收采用多模光纖,這樣有利于耦合。模塊的襯底是高分子聚合物材料。為了降低成本,模塊不用致冷器和隔離器?,F(xiàn)已有價(jià)格可低于100美元的10Gbit/s模塊出售。
6.收發(fā)器件的發(fā)展方向
用于WDM系統(tǒng)的波長(zhǎng)可控光源、波長(zhǎng)可調(diào)光源和多波長(zhǎng)光源是研究重點(diǎn),縮小波長(zhǎng)間隔是發(fā)展的必然,其波長(zhǎng)間隔將是現(xiàn)在(100GHz)的1/2或1/3;進(jìn)一步開發(fā)集成的光電子器件,特別是用于超寬帶接入網(wǎng)中的低成本廉價(jià)的PIC、OEIC器件。
由于光纖激光器具有輸出功率高(單模輸出大于10mw)、相對(duì)強(qiáng)度噪聲低、線寬極窄(2.5kHz)、調(diào)諧范圍寬(可達(dá)50nm)、輸出穩(wěn)定性高以及與光纖的兼容性好等優(yōu)點(diǎn),近期發(fā)展很快,很受重視。
對(duì)于光接收器件,通過對(duì)可用于10Gbit/s系統(tǒng)的SL-APD和背面受光PD的研究,開展諸如APD/PD超高速器件之類的研究和光的3R器件研究,用于長(zhǎng)距離網(wǎng)絡(luò),用于100個(gè)信道量級(jí)的光探測(cè)器和電子電路的混合集成器件,以及光探測(cè)器和電子器件的OEIC陣列器件是技術(shù)的焦點(diǎn)。隨著網(wǎng)絡(luò)分支數(shù)的增加、傳輸距離的延長(zhǎng),需開發(fā)低壓APD和電子電路集成器件,以降低功耗,實(shí)現(xiàn)高可靠工作。
評(píng)論