各種傳感器相關知識
溫度是一個基本的物理量,自然界中的一切過程無不與溫度密切相關。溫度傳感器是最早開發(fā),應用最廣的一類傳感器。根據美國儀器學會的調查,1990年,溫度傳感器的市場份額大大超過了其他的傳感器。從17世紀初伽利略發(fā)明溫度計開始,人們開始利用溫度進行測量。真正把溫度變成電信號的傳感器是1821年由德國物理學家賽貝發(fā)明的,這就是后來的熱電偶傳感器。五十年以后,另一位德國人西門子發(fā)明了鉑電阻溫度計。在半導體技術的支持下,本世紀相繼開發(fā)了半導體熱電偶傳感器、PN結溫度傳感器和集成溫度傳感器。與之相應,根據波與物質的相互作用規(guī)律,相繼開發(fā)了聲學溫度傳感器、紅外傳感器和微波傳感器。
我們現在主要介紹常用的熱電偶溫度傳感器。比如兩種不同材質的導體,如在某點互相連接在一起,對這個連接點加熱,在它們不加熱的部位就會出現電位差。這個電位差的數值與不加熱部位測量點的溫度有關,和這兩種導體的材質有關。這種現象可以在很寬的溫度范圍內出現,如果精確測量這個電位差,再測出不加熱部位的環(huán)境溫度,就可以準確知道加熱點的溫度。由于它必須有兩種不同材質的導體,所以稱之為“熱電偶”。不同材質作出的熱電偶使用于不同的溫度范圍,它們的靈敏度也各不相同。熱電偶的靈敏度是指加熱點溫度變化1 攝氏度時,輸出電位差的變化量。對于大多數金屬材料支撐的熱電偶而言,這個數值大約在5 到40微伏每攝氏度之間。
由于構成熱電偶的金屬材料可以耐受很高的溫度,例如鎢錸熱電偶能夠工作在2000攝氏度以上的高溫,常常用來檢測高溫環(huán)境的熱物理參數,還有的材料能夠在低溫下工作,例如金鐵熱電偶能夠在液氮的溫度附近工作??梢姛犭娕紓鞲衅髂軌蛟诤軓V泛的溫度范圍內工作。
熱電偶傳感器有自己的優(yōu)點和缺陷,它靈敏度比較低,容易受到環(huán)境干擾信號的影響,也容易受到前置放大器溫度漂移的影響,因此不適合測量微小的溫度變化。由于熱電偶溫度傳感器的靈敏度與材料的粗細無關,用非常細的材料也能夠做成溫度傳感器。也由于制作熱電偶的金屬材料具有很好的延展性,這種細微的測溫元件有極高的響應速度,可以測量快速變化的過程,如燃燒和爆炸過程等。對一般的工業(yè)應用來說,為了保護感溫元件避免受到腐蝕和磨損,總是裝在厚厚的護套里面,外觀就顯得笨大,對于溫度場的反應也就遲緩得多。使用熱電偶的時候,必須消除環(huán)境溫度的波動對測量帶來的影響。有的把它的自由端放在不變的溫度場中,有的使用冷端補償器抵消這種影響。當測量點遠離儀表時,還需要使用熱點勢率和熱電偶相近的導線來傳輸信號,這種導線稱為補償導線。
溫度傳感器是五花八門的各種傳感器中最為常用的一種,現代的溫度傳感器外形非常得小,這樣更加讓它廣泛應用在生產實踐的各個領域中,也為我們的生活提供了無數的便利和功能。
二、熱電阻傳感器
熱電阻傳感器主要是利用電阻值隨溫度變化而變化這一特性來測量溫度及與溫度有關的參數。在溫度檢測精度要求比較高的場合,這種傳感器比較適用。目前較為廣泛的熱電阻材料為鉑、銅、鎳等,它們具有電阻溫度系數大、線性好、性能穩(wěn)定、使用溫度范圍寬、加工容易等特點。用于測量-200℃~+500℃范圍內的溫度
三、壓阻式傳感器
壓阻式傳感器是根據半導體材料的壓阻效應在半導體材料的基片上經擴散電阻而制成的器件。其基片可直接作為測量傳感元件,擴散電阻在基片內接成電橋形式。當基片受到外力作用而產生形變時,各電阻值將發(fā)生變化,電橋就會產生相應的不平衡輸出。
四、電阻式傳感器
電阻式傳感器是將被測量,如位移、形變、力、加速度、濕度、溫度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式傳感器件。
五、電阻應變式傳感器
傳感器中的電阻應變片具有金屬的應變效應,即在外力作用下產生機械形變,從而使電阻值隨之發(fā)生相應的變化。電阻應變片主要有金屬和半導體兩類,金屬應變片有金屬絲式、箔式、薄膜式之分。半導體應變片具有靈敏度高(通常是絲式、箔式的幾十倍)、橫向效應小等優(yōu)點。
評論