基于單目視覺的智能車輛視覺導(dǎo)航系統(tǒng)設(shè)計
2.2 車輛檢測
圖像中包含車輛前方很大視野內(nèi)的物體,如道路、樹木、護(hù)欄、標(biāo)牌以及其他車輛,要從中準(zhǔn)確檢測出前方車輛是一項困難的工作,而本文的車輛檢測模塊會根據(jù)圖像背景自動改變設(shè)置參數(shù),以適應(yīng)不斷變化的道路場景和光照條件。
要實現(xiàn)車輛的快速檢測,首先需要根據(jù)車輛的基本特征進(jìn)行初步檢測,將所有可能的疑似車輛區(qū)域從圖像中提取出來,然后再根據(jù)其他特征對疑似區(qū)域進(jìn)行篩選排除。
2.2.1 車輛初步檢測
初步檢測采用的特征是車輛陰影,即一塊位于目標(biāo)車輛底部、灰度值明顯比附近路面區(qū)域低的區(qū)域。在一般環(huán)境條件下,大部分車輛都具有這一顯著特征。
車輛初步檢測的流程如圖1所示。車輛陰影和車道一樣具有灰度突變的特點,因此可以調(diào)用車道檢測算法對圖2(a)中的原始圖像做二值化處理,得到圖2(b)中的邊緣二值化圖像。同時還要對原始圖像進(jìn)行灰度二值化,得到圖2(c)中的灰度二值化圖像。為提高檢測實時性,以本車附近路面區(qū)域的平均灰度作為二值化閾值。由于邊緣二值化圖像和灰度二值化圖像都包括了車輛的下底邊,將這兩幅圖像進(jìn)行“或”運算,就可以得到如圖2(d)所示的車輛陰影圖像。
在陰影圖像中由下至上逐行搜索,尋找連續(xù)陰影點超過一定閾值的線段,并以此線段為底邊劃出一個矩形區(qū)域作為疑似車輛區(qū)域。為保證疑似區(qū)域包含車輛整體,矩形的寬度比線段稍寬,高度由寬度按比例給出。為避免重復(fù)搜索,將已搜索到的疑似區(qū)域內(nèi)陰影完全抹去。由于同一車輛的各個部分可能分別被檢測為疑似目標(biāo),因此還需要對各個相交的疑似區(qū)域進(jìn)行合并。由于前方車輛的遮擋,可能會將多個目標(biāo)認(rèn)定為一個目標(biāo),但是對本車的安全無影響。
2.2.2 篩選驗證
如果單純采用陰影特征進(jìn)行車輛檢測,在保證較低“漏警”率的同時,也造成了較高的“虛警”率,因此還需要對疑似區(qū)域進(jìn)行篩選和驗證。
對于結(jié)構(gòu)化道路,車輛寬度與車道寬度的比值應(yīng)該是大致固定的,那么當(dāng)攝像機的焦距、俯仰角等參數(shù)固定后,圖像上車道寬度(像素數(shù))與車輛寬度(像素數(shù))也滿足這個比例。根據(jù)之前檢測的車道方程,就可以計算出感興趣區(qū)域內(nèi)任意縱坐標(biāo)上車輛圖像寬度的范圍,并剔除寬度不在此范圍內(nèi)的疑似區(qū)域。
評論