技術解析:服務器的冗余電源技術
冗余電源是高可用系統(tǒng)中關鍵的部分。在最簡單的解決方案中,兩只電源可以利用二極管來通過或門輸出以驅(qū)動負載。這樣,這兩只電源既可以共同工作,也可以一只工作,一只備用。
場效應晶體管(FET)ORing控制器是一款更實用的解決方案,因為它避免了二極管電壓降、功率損耗以及熱損耗。因此我們可以用低電壓損失MOSFET來配置新穎經(jīng)濟的系統(tǒng)。在這里我們將討論幾個服務器冗余電源配置的示例。
高可用系統(tǒng)的電源總線可能采用OR或者N+1配置,或者兩者同時采用。通常來說,因為存在正向壓降及其帶來的熱損耗,所以在低電壓、高電流的應用中我們不采用二極管。因此人們更傾向于采用FETORing技術。然而,采用高度集成和分立式設計的MOSFSET控制器本身也存在很多不足之處。
在圖1中,MOSFET兩端的差分電壓VAC是由控制器監(jiān)控的,控制器是根據(jù)VAC來設置MOSFET的閘極電壓的。在MOSFET開啟和關閉時的實際開關點電壓以及控制的方法和速度決定了控制器成功地模擬二極管的性能和穩(wěn)定性。
TPS2410控制器是專門為服務器應用而設計的。服務器的負載通常是低電壓、相對穩(wěn)定的高電流,不允許出現(xiàn)流向失效電源(failedpowersupply)的反向電流。下面我們將討論一些有關冗余電源配置的示例。示例中采用了圖1中帶方框的二級管符號來表示N通道MOSFET和控制器的簡圖。
圖1、“帶框的二級管”表示控制器和MOSFET的簡圖
OR配置
圖2顯示了一款簡單的ORing電源控制器。通常,在刀片服務器上的主電源總線為正12伏。其他電源軌上的OR布線也是如此,甚至包括CPU的內(nèi)核電壓,它們通常是0.8到1.8伏。計算機內(nèi)核電壓太低,無法使用二極管。
圖2、簡單電源的OR
這個例子當中的組件位置沒有標出。設計人員可以把系統(tǒng)分區(qū)然后在電源或者刀片服務器上找到ORing電路。
并聯(lián)的MOSFET
控制器的柵極關斷電流足以驅(qū)動MOSFET柵極。針對高電流應用,MOSFET可以并聯(lián)方式連接,或者以背靠背(back-to-back)的方式連接來去除MOSFET主體二極管效應。以并聯(lián)方式接入的MOSFET與相同部件號的器件有細微的參數(shù)上的區(qū)別。在并聯(lián)工作時,它們的負載會出現(xiàn)不均衡,且這種不均衡在開啟時比在恒定狀態(tài)下更為明顯。通常,一個MOSFET承載大部分的啟動電流。此處是指只考慮通常選用的MOSFET的因素,但是對于并聯(lián)的MOSFET來說,則需要查詢MOSFET參數(shù)中的安全工作區(qū)(SOA)。單個MOSFET應該能支持幾十微秒的負載。
背靠背的MOSFET
TPS2410控制器的功能突破了基本的ORing功能,其具有欠壓和過壓保護功能,而更簡單的控制器(如TPS2412)只能提供基本的ORing功能。將檢測過壓的ORing控制器和背靠背MOSFET配置在一起使用可能會讓我們受益非淺。當檢測到過壓情況以后,控制器就會關閉MOSFET柵極,且PG信號為false以表明出現(xiàn)了過壓的情況。如果過壓超過了正向主體二極管電壓,電源則不斷向負載供應更高的電壓。PG狀態(tài)的輸出會發(fā)出信號讓系統(tǒng)電源控制器關閉失效的電源。背靠背MOSFET確保控制器一檢測到過壓情況就立刻關閉輸出。
為電源總線供電
該控制器可以對電源和電源總線之間的熱插拔事件進行管理。無論電源和總線處于什么狀態(tài),電源都可以熱插拔到電源總線上。當電源從電源總線上熱拔時,控制器會把MOSFET輸入端的電壓調(diào)至為0伏,從而盡可能地把裸露的連接器引腳電壓降至安全范圍。MOSFET需要負電壓控制器繼續(xù)驅(qū)動柵極以使其保持開啟狀態(tài),而負載電壓則通過MOSFET被映射(reflectback)到輸入連接器引腳之上。
電源總線到負載
像TPS2490這樣的熱插拔控制器應該用在電源總線和刀片服務器之間。當?shù)镀掌鳠岵灏螘r,輸入端大容量電容先被放電并產(chǎn)生很高的浪涌電流,浪涌電流會破壞總線連接器和電路板,進而可以導致短暫的壓降并影響其他系統(tǒng)電子組件。熱插拔控制器可以管理浪涌電流并且在穩(wěn)定的狀態(tài)下發(fā)揮高速電路斷路器的作用,以保護系統(tǒng)組件。其還可以防止其他操作軟件出現(xiàn)故障。
N+1配置
N+1布線和圖2中的OR布線是一樣的,但是至少有3個電源接入總線。這種方式可以擴展到任何N個電源,并由第N+1個額外電源作為冗余電源。這種N+1的組合電源比OR更加經(jīng)濟。在OR配置的情況下,需要使用兩個大電源,因為每個電源都必須能夠在其他電源故障時承擔起最大負載。這些電源在正常運轉(zhuǎn)情況下可能會負載共享,但這并不是必須的。通常,N+1個電源的設計負載為總負載電流的N分之一。這樣,在一個電源故障的時候其余的可以繼續(xù)供電。如果將N+1個電源輸出電壓調(diào)節(jié)得非常接近,那么在大電流應用中就會出現(xiàn)負載共享。和ORing一樣,電源可以熱插拔。
N+1電源比OR更經(jīng)濟實惠,因為N+1電源總線具有可擴展性。為了降低系統(tǒng)電源成本,當負載增加時,我們可以添加電源。較低電流的電源可能不需要并聯(lián)的MOSFET。
假設刀片服務器背板的配置為OR(兩組N+1總線),如圖3所示。每個刀片服務器由A、B總線共同供電,這兩個電源總線由N+1只電源組成。這些刀片服務器的總線即為OR型。
圖3、N+1A、B總線的OR
請注意供電(powerfeed)的拓樸結(jié)構(gòu)。刀片服務器與電源連接的物理就位對電源總線的平均電壓提出了更高的要求,這有助于共同負載。在這個示例中,刀片1主要由總線A供電,而刀片M主要由總線B供電。這樣,冗余的熱插拔電源比共同負載解決方案更加經(jīng)濟。這種電源分配方案對其他背板負載具有很重要的實際意義,比如存儲子系統(tǒng)中的磁盤驅(qū)動器。
為了滿足這些服務器的要求,您的控制器必須要具備如下功能:
·正關閉閾值電壓功能——該功能可以確保沒有流向失效電源的反向電流,并確保對一個電源進行熱拔時在電源總線輸入終端沒有電壓。
·線性柵極控制功能——該功能是首要的功能,因為在電源轉(zhuǎn)換時其可以保證穩(wěn)定性。具有開關控制功能的控制器不允許反向電流流向電源,該控制器在狀態(tài)轉(zhuǎn)變時會出現(xiàn)震蕩。
·為了驅(qū)動并聯(lián)或背靠背的MOSFET并保證快速關閉時間,柵極關閉電流必須要高于2安培??焖訇P機時間對于在檢測到快速關機閾值后防止反向電流流向電源至關重要。
·自帶電源型設備具有內(nèi)部充電泵,其不需要輔助組件且電路板面積非常小。
·可以與系統(tǒng)電源控制器配合工
評論