教你如何通俗理解開關電源EMI
下面結合一些專家的文獻來描述EMI.
首先EMI 有三個基本面
噪音源:發(fā)射干擾的源頭, 如同傳染病的傳染源
耦合途徑:傳播干擾的載體,如同傳染病傳播的載體,食物,水,空氣.......
接收器:被干擾的對象,被傳染的人。
缺少一樣,電磁干擾就不成立了。所以,降低電磁干擾的危害,也有三種辦法:
1. 從源頭抑制干擾。
2.切斷傳播途徑
3.增強抵抗力,這個就是所謂的EMC(電磁兼容)
解釋以下名詞:
傳導干擾:也就是噪音通過導線傳遞的方式。
輻射干擾:也就是噪音通過空間輻射的方式傳遞。
差模干擾:由于電路中的自身電勢差,電流所產(chǎn)成的干擾,比如火線和零線,正極和負極。
共模干擾:由于電路和大地之間的電勢差,電流所產(chǎn)生的干擾。
通常我們?nèi)嶒炇覝y試的項目:
傳導發(fā)射:測試你的電源通過傳導發(fā)射出去的干擾是否合格。
輻射發(fā)射:測試你的電源通過輻射發(fā)射出去的干擾是否合格。
傳導抗擾:在具有傳導干擾的環(huán)境中,你的電源能否正常工作。
輻射抗擾:在具有輻射干擾的環(huán)境中,你的電源能否正常工作。
首先來看,噪音的源頭:
任何周期性的電壓和電流都能通過傅立葉分解的方法,分解為各種頻率的正弦波。
所以在測試干擾的時候,需要測試各種頻率下的噪音強度。
那么在開關電源中,這些噪音的來源是什么呢?
開關電源中,由于開關器件在周期性的開合,所以,電路中的電流和電壓也是周期性的在變化。那么那些變化的電流和電壓,就是噪音的真正源頭。那么有人可能會問,我的開關頻率是100KHz的,但是為什么測試出來的噪音,從幾百K到幾百M都有呢?
我們把同等有效值,同等頻率的各種波形做快速傅立葉分析:
藍色: 正弦波
綠色: 三角波
紅色: 方波
可以看到,正弦波只有基波分量,但是三角波和方波含有高次諧波,諧波最大的是方波。
也就是說如果電流或者電壓波形,是非正弦波的信號,都能分解出高次諧波。
那么如果同樣的方波,但是上升下降時間不同,會怎樣呢。
同樣是100KHz的方波
紅色:上升下降時間都為100ns
綠色:上升下降時間都為500ns
可以看到紅色的高次諧波明顯大于綠色。
我們繼續(xù)分析下面兩種波形,
A: 有嚴重高頻震蕩的方波, 比如MOS,二極管上的電壓波形。
B:用吸收電路,把方波的高頻振蕩吸收一下。
分別做快速傅立葉分析:
可以看到在振蕩頻率(大概30M)之后,A波形的諧波,要大于B波形。
再來看,下面的波形,一個是具有導通尖峰的電流波形,一個沒有導通尖峰。
對兩個波形做傅立葉分析:
可以看到紅色波形的高次諧波,要大于綠色波形,繼續(xù)對兩個波形,作分析
紅色: 固定頻率的信號,綠色:具有稍微頻率抖動的信號
可以看到,頻率抖動,可以降低低頻段能量。進一步,放大低頻段的頻譜能量:
可以看到,頻率抖動就是把頻譜能量分散了,而固定頻率的頻譜能量,集中在基波的諧波頻率點,所以峰值比較高,容易超標。
最后稍微總結一下,如果從源頭來抑制EMI。
1.對于開關頻率的選擇,比如傳導測試150K-30M,那么在條件容許的情況下,可選擇130K之類的開關頻率,這樣基波頻率可以避開測試。
2.采用頻率抖動的技術。頻率抖動可以分散能量,對低頻段的EMI有好處。
3.適當降低開關速度,降低開關速度,可以降低開關時刻的di/dt,dv/dt。對高頻段的EMI有好處。
4.采用軟開關技術,比如PSFB,AHB之類的ZVS可以降低開關時刻的di/dt,dv/dt。對高頻段的EMI有好處。而LLC等諧振技術,可以讓一些波形變成正弦波,進一步降低EMI。
5.對一些振蕩尖峰做吸收,這些管子上的振蕩,往往頻率很高,會發(fā)射很大的EMI.
6.采用反向恢復好的二極管,二極管的反向恢復電流,不但會帶來高di/dt.還會和漏感等寄生電感共同造成高的dv/dt.
但事實上,開關電源是EMI發(fā)射源無法根本解決。而且一些從源頭抑制EMI的方法同時會降低效率,所以從傳播途徑來抑制EMI顯得尤為重要。
下面來看一下傳播途徑,這個是poon Pong 兩位教授總結的傳播途徑,比較的直觀全面。
評論