開關(guān)電源的影響的主要因素
基于上述討論,減小開關(guān)器件損耗的直接途徑是:選擇低導(dǎo)通電阻、可快速切換的MOSFET;選擇低導(dǎo)通壓降、快速恢復(fù)的二極管。通常,增加芯片尺寸和漏源極擊穿電壓,有助于降低導(dǎo)通電阻。因此,選擇MOSFET時需要在尺寸和效率之間進行權(quán)衡。另外,由于MOSFET的正溫度特性,當芯片溫度升高時,導(dǎo)通電阻會相應(yīng)增大。必須采用適當?shù)臒峁芾矸桨副3州^低的結(jié)溫,使導(dǎo)通電阻不會過大。導(dǎo)通電阻和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓,使MOSFET充分導(dǎo)通,該方案也會增大柵極驅(qū)動損耗。而且,開關(guān)控制器件本身通常無法產(chǎn)生較高的柵極驅(qū)動電壓,除非芯片提供有自舉電路,或采用外部柵極驅(qū)動。MOSFET的開關(guān)損耗取決于寄生電容,較大的寄生電容需要較長的充電時間,使開關(guān)轉(zhuǎn)換變緩,損耗更多的能量。米勒電容通常反比于MOSFET的傳導(dǎo)電容或柵-漏電容,在開關(guān)過程中對轉(zhuǎn)換時間起決定作用。米勒電容的充電電荷定義為QGD,為了快速切換MOSFET,要求盡可能低的米勒電容。一般來說,MOSFET的電容和芯片尺寸成反比,因此必須折衷考慮開關(guān)損耗和傳導(dǎo)損耗,同時也要謹慎選擇電路的開關(guān)頻率。
對于二極管,必須降低導(dǎo)通壓降,以降低由此產(chǎn)生的損耗。對于小尺寸、額定電壓較低的二極管,導(dǎo)通壓降一般在0.7V~1.5V之間。二極管的尺寸、工藝和耐壓等級都會影響導(dǎo)通壓降和反向恢復(fù)時間。額定電壓較高的大尺寸二極管通常具有較高VF的和tRR,這會造成比較大的損耗。高速應(yīng)用中的開關(guān)二極管一般以速度劃分,速度越高,反向恢復(fù)時間越短。快恢復(fù)二極管的tRR為幾百納秒,而超高速快恢復(fù)二極管的tRR為幾十納秒。PN結(jié)二極管的導(dǎo)通壓降較大,適合大電流、高壓工作場合,通常用于大功率系統(tǒng)。低功率或便攜產(chǎn)品中,即使經(jīng)過優(yōu)化選擇的導(dǎo)通壓降和tRR二極管仍會帶來較大的損耗。
低功耗應(yīng)用中,替代快恢復(fù)二極管的一種選擇是肖特基二極管,這種二極管的恢復(fù)時間幾乎可以忽略,反向恢復(fù)電壓也只有普通二極管的一半,但它的工作電壓遠遠低于快恢復(fù)二極管。考慮到這些特點,肖特基二極管被廣泛用于低功耗設(shè)計,在低占空比時可以降低開關(guān)二極管的損耗。
公式
在一些低壓應(yīng)用中,即便是具有較低壓降的肖特基二極管,所產(chǎn)生的傳導(dǎo)損耗也無法接受。比如,在輸出為1.5V的電路中,肖特基二極管的0.5V導(dǎo)通壓降會產(chǎn)生33%的能量損耗。為了解決這一問題,可以選擇低導(dǎo)通電阻的MOSFET實現(xiàn)同步控制架構(gòu)。圖1電路用MOSFET取代二極管,它與另外一個MOSFET同步工作,所以在交替切換的過程中,保證只有一個導(dǎo)通。由此,二極管的高導(dǎo)通壓降問題被轉(zhuǎn)換成MOSFET的導(dǎo)通電阻和壓降,取代了二極管的傳導(dǎo)損耗。當然,同步整流也會帶來其它影響,例如:增加了系統(tǒng)設(shè)計的復(fù)雜度、成本,特別是在大電流應(yīng)用中,這種架構(gòu)不見得比異步方案更優(yōu)越,因為MOSFET傳導(dǎo)損耗的提升與電流的平方成正比。另外,我們還要考慮同步整流中柵極驅(qū)動引入的能量損耗。
以上討論了MOSFET和二極管對開關(guān)電源效率的影響。合理選擇開關(guān)器件有助于改善效率,但這并非唯一的優(yōu)化開關(guān)電源設(shè)計的渠道。從下面的討論可以看到,電感、電容引入的損耗也是設(shè)計高效開關(guān)電源所面臨的問題。
電感損耗
電感功耗包括線圈損耗和磁芯損耗,線圈損耗歸結(jié)于線圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。對一個固定的電感值,電感尺寸較小時,為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導(dǎo)致DCR增大;對于給定的電感尺寸,小電感值允許減小DCR。已知DCR和平均電感電流Ilavq,電感的電阻損耗可以用下式估算。
PLdcr = ILavg 2×DCR
磁芯損耗并不像傳導(dǎo)損耗那樣容易估算。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。開關(guān)電源中,盡管平均直流電流流過電感,由于通過電感的開關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。磁滯損耗源于每個交流周期中磁芯偶極子的重新排列所消耗的功率,正比于頻率和磁通密度。
電容損耗
與理想的電容模型相反,電容元件的實際物理特性導(dǎo)致了幾種損耗。電容在電源電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖4),電容的這些損耗降低了開關(guān)電源的效率。這些損耗可以通過三種現(xiàn)象描述:等效串聯(lián)電阻損耗、漏電流損耗和電介質(zhì)損耗。電容的阻性損耗顯而易見。既然電流在每個開關(guān)周期流入、流出電容,電容固有的電阻(Rc)將造成一定功耗。漏電流損耗(RL)是由于電容絕緣材料的電阻導(dǎo)致較小電流流過電容而產(chǎn)生的功率損耗。電介質(zhì)損耗(RD)比較復(fù)雜,由于電容兩端施加了交流電壓,電容電場發(fā)生變化,從而使電介質(zhì)分子極化造成功率損耗。
圖4電容損耗模型一般簡化為一個等效串聯(lián)電阻
開關(guān)電源IC的折衷選擇
合理選擇開關(guān)電源IC有助于改善系統(tǒng)效率,特別需要考慮IC封裝、設(shè)計和控制架構(gòu)。功率開關(guān)集成到IC內(nèi)部時可以省去繁瑣的MOSFET或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應(yīng),可以在一定程度上提高效率。IC規(guī)格中值得注意的一項指標是靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于一倍或兩倍的靜態(tài)電流),IQ對效率的影響并不明顯,因為負載電流遠大于IQ,而隨著負載電流的降低,效率有下降的趨勢,因為IQ對應(yīng)的功率占總功率的比例提高。對于便攜產(chǎn)品或電池供電產(chǎn)品,無疑選擇具有極低IQ的電源IC比較理想,有些IC則通過不同的工作模式(例如:休眠模式或低功耗關(guān)斷模式)來降低IQ。
開關(guān)電源的控制架構(gòu)是影響開關(guān)電源效率的關(guān)鍵因素之一。圖1所示同步整流架構(gòu)中,由于采用低導(dǎo)通電阻的MOSFET取代了功耗較大的開關(guān)二極管,可有效改善效率指標。另一種常見的DC-DC控制結(jié)構(gòu)是在輕載時進入跳脈沖工作模式,與單純的PWM開關(guān)操作(在重載和輕載時均采用固定的開關(guān)頻率)不同,跳脈沖模式下轉(zhuǎn)換器工作在跳躍的開關(guān)周期,可以節(jié)省不必要的開關(guān)操作。跳脈沖模式下,在一段較長時間內(nèi)電感放電,將能量從電感傳遞給負載,以維持輸出電壓。但是,跳脈沖模式會產(chǎn)生額外的輸出噪聲,這些噪聲由于分布在不同頻率,很難濾除。先進的開關(guān)電源IC會合理利用兩者的優(yōu)勢:重載時采用恒定PWM頻率;輕載時采用跳脈沖模式,圖1所示IC即提供了這樣的工作模式。
優(yōu)化開關(guān)電源效率
開關(guān)電源因其高效率指標得到廣泛應(yīng)用,但其效率仍然受開關(guān)電路的一些固有損耗的制約。設(shè)計開關(guān)電源時,需要仔細研究造成開關(guān)電源損耗的來源,合理選擇器件,從而充分利用開關(guān)電源的高效優(yōu)勢。
評論