用成型濾波器組提高測距精度的一種方法
摘 要:在許多測距系統(tǒng)中,精確地調(diào)整用戶端回復幀的發(fā)送時刻是提高測距精度的關鍵。介紹了用FPGA實現(xiàn)的一種數(shù)字式成型濾波器組,它可大幅度地縮短發(fā)送時刻的調(diào)整步長,有效地提高測距精度,已被成功應用于某個測距系統(tǒng)中。
關鍵詞:測距 幀參考時標 子波形 成型濾波器 成型濾波器組
在許多測距系統(tǒng)中,用戶端接收到基站發(fā)送的幀信號后,便以該幀中特定的位置(稱為幀參考時標)為基準發(fā)送“回復幀"給基站?;臼盏交貜蛶?提取它的幀參考時標,并以其作為測距的依據(jù)。
通常用戶端的系統(tǒng)時鐘精度較低(本文提到的系統(tǒng)時鐘均指用戶端的系統(tǒng)時鐘),因此接收到的幀參考時標會存在誤差。在用戶端經(jīng)過計算估計出幀參考時標的誤差,再用該誤差調(diào)整發(fā)送回復幀的時刻,可實現(xiàn)精確測距。因此測距精度取決于兩個因素:幀參考時標誤差的估計精度和回復幀發(fā)送時刻的調(diào)整精度。本文主要討論如何提高回復幀發(fā)送時刻的調(diào)整精度。回復幀是由基帶碼組成的,因此下文中講的發(fā)送時刻的調(diào)整均指基帶碼發(fā)送時刻的調(diào)整。
發(fā)送時刻的調(diào)整精度是由發(fā)送時刻的調(diào)整步長決定的。在一般的數(shù)字系統(tǒng)中,發(fā)送時刻的調(diào)整步長不小于一個系統(tǒng)時鐘的周期。本文利用Altera公司的EP20K300EQC240-3型FPGA器件設計了一種成型濾波器組,使發(fā)送時刻的調(diào)整步長縮短為時鐘周期的五分之一,從而將發(fā)送時刻的調(diào)整精度大幅度地提高。
1 成型濾波器組調(diào)整發(fā)送時刻的原理
成型濾波器組的設計原理圖如圖1所示。成型濾波器組包括一組成型濾波器。相同的發(fā)送基帶碼經(jīng)成型濾波器組中不同的成型濾波器濾波后,會產(chǎn)生不同延時的發(fā)送數(shù)據(jù)波形。發(fā)送數(shù)據(jù)波形的延時不同,則發(fā)送時刻也不同。這就是說,相同的基帶碼經(jīng)過不同的成型濾波器濾波后可產(chǎn)生不同發(fā)送時刻的波形。因此,以測距誤差作為選擇字,根據(jù)誤差的大小選擇相應的成型濾波器,就可間接地調(diào)整發(fā)送基帶碼的時刻。
圖1 成型濾波器組的設計原理圖
2 用FPGA設計成型濾波器
通常,系統(tǒng)時鐘頻率遠高于基帶碼的速率,因此在成型濾波前,要在基帶碼的相鄰碼之間進行內(nèi)插。內(nèi)插的方式有多種,通常的內(nèi)插方法是在發(fā)送的基帶碼的相鄰碼之間內(nèi)插“0”。將基帶碼插“0”后,與低通濾波器的沖激響應卷積,再送到D/A轉換器轉換成模擬波形就可以實現(xiàn)濾波成型。設計低通濾波器時,為了得到較好的波形,通常采用高階的FIR濾波器。如果在FPGA中用邏輯單元實現(xiàn)高階FIR濾波器,會占用大量的邏輯單元。比如在Altera公司的FPGA中用邏輯單元實現(xiàn)一個50階的FIR濾波器,需要26個乘法器和50個加法器,要占用一千多個邏輯單元。而本文利用FPGA中的ROM,用查表的方法設計同樣的FIR濾波器,則只需占用幾十個邏輯單元。圖2是成型濾波器的設計原理圖。該設計包括用數(shù)學工具——MATLAB預先設計的部分和在FPGA中實現(xiàn)的部分,MATLAB完成成型濾波后的數(shù)據(jù)波形文件的設計。FPGA存儲設計好的數(shù)據(jù)波形文件,并用發(fā)送的基帶碼選通相應波形的存儲地址,完成濾波成型。
圖2 成型濾波器的設計原理圖
首先用MATLAB設計數(shù)據(jù)波形文件。設系統(tǒng)基帶碼速率為N MHz,系統(tǒng)時鐘頻率為B MHz。FIR濾波器的階數(shù)為(C為奇數(shù),可根據(jù)濾波器的階數(shù)要求進行選擇)。FIR濾波器的系數(shù)可通過MATLAB進行設計。將C個基帶碼排列組合成2C種情況。對于每種組合,在C個基帶碼的相鄰碼間內(nèi)插-1個0后,與設計好的濾波器的沖激響應卷積。卷積結果的中間個數(shù)據(jù)波形值就是該C個基帶碼組合的中間基帶碼(簡稱中間碼)的濾波結果值。這個數(shù)據(jù)波形值可以存儲在以該種組合(C個碼)為基地址的ROM中。MATLAB可以計算出所有組合下C個基帶碼的中間碼的濾波結果值。
FPGA將所有濾波結果值存入ROM,將每個濾波結果值所對應的基帶碼組合作為該濾波結果值的存儲地址。系統(tǒng)運行時,用一個C位移位寄存器存儲C個基帶碼,作為地址選通ROM,則ROM輸出的濾波結果值是C個基帶碼的中間碼的濾波結果值。隨著基帶碼依次到達移位寄存器,移位寄存器中C個基帶碼的中間碼也被后面的基帶碼依次替換, ROM輸出的將是依次到達的中間碼的濾波結果值,從而實現(xiàn)基帶碼的濾波成型。
圖2中ROM存儲的數(shù)據(jù)是設計一個成型濾波器得到的波形數(shù)據(jù),為了與下面成型濾波器組的存儲數(shù)據(jù)相區(qū)別,將圖2中ROM存儲的所有波形數(shù)據(jù)統(tǒng)稱為一個子波形。
3 在FPGA中用成型濾波器組調(diào)整發(fā)送時刻的方法
圖3是成型濾波器組的實現(xiàn)方案圖。圖中的FPGA的ROM中存儲了E個子波形,稱為一個成型濾波器組。第一個子波形就是圖2所設計的子波形,稱為原來的子波形。之后的E-1個子波形是原來的子波形以時鐘周期的1/E循環(huán)左移1,2,...,E-1次得到的。如何得到這些移位后的子波形是設計的關鍵。由于波形的移位在MATLAB中是以數(shù)值的變化體現(xiàn)出來的,而通過MATLAB計算可以得到數(shù)值精度很高的波形數(shù)據(jù),所以用MATLAB設計的波形,移位可以遠小于時鐘周期,因此可以很容易用MATLAB得到以時鐘周期的1/E循環(huán)左移后的各個子波形。
圖3 成型濾波器組的實現(xiàn)方案圖
各移位后的子波形按循環(huán)左移大小依次存儲在ROM中。因此一個時鐘周期的延時被劃分成了E個區(qū)間,將測距誤差除以時鐘周期,得到余數(shù)R,計算出R落在了E個區(qū)間中的哪個。選擇該區(qū)間的子波形,將該子波形送到D/A轉換器轉換成模擬波形后再輸出,就可將發(fā)送時刻的調(diào)整步長降到時鐘周期的1/E。實際設計時,在MATLAB中將FIR濾波器的沖激響應以時鐘周期的1/E循環(huán)左移,再與插零后的基帶碼卷積,就實現(xiàn)了子波形的循環(huán)左移。而通常的系統(tǒng)實時產(chǎn)生的波形是由系統(tǒng)時鐘控制的,延時不會小于一個時鐘周期,因此其調(diào)整精度遠不如用MATLAB設計的成型濾波器組的方法。
上面介紹的是子波形循環(huán)左移的方法,也可以將子波形循環(huán)右移,道理是一樣的。
4 實例與仿真
4.1 子波形的設計與仿真
本設計所應用的測距系統(tǒng)的基帶碼速率為2MHz,系統(tǒng)時鐘頻率為20MHz,因此在2MHz基帶碼的相鄰比特間內(nèi)插個“0”,然后通過階(C選為5)的FIR濾波器就可實現(xiàn)成型濾波。5個基帶碼可排列成32種組合,圖4是其中的一種基帶碼組合——11011的成型濾波的仿真結果。圖中顯示了該組合插零后與成型濾波器的沖激響應進行卷積的過程??梢钥闯?卷積后的中間10點數(shù)據(jù)波形正好是插零前5個基帶碼中間的信號0經(jīng)濾波器平滑后的波形。這10點數(shù)據(jù)波形存在以11011為基地址的ROM中。
圖4 基帶碼組合11011的成型濾波的仿真結果
4.2 成型濾波器組的設計
由于時鐘周期為50ns,當要求最小調(diào)整步長不大于10ns時,在MATLAB中將FIR濾波器的沖激響應以時鐘周期的1/5循環(huán)左移,再與插零后的基帶碼進行卷積,就可以得到以時鐘周期的1/5循環(huán)左移0,1,2,3,4次后形成的五個子波形。圖5是組合為11011的基帶碼經(jīng)上述方式產(chǎn)生的五個子波形的圖。
圖5組合為11011的基帶碼經(jīng)上述方式產(chǎn)生的五個子波形的圖
從圖5中中央的兩條虛線可以看出,經(jīng)五次移位后的第五個子波形的0碼與原來的子波形的0碼相比,延時為4/5個時鐘周期。這樣就將調(diào)整發(fā)送時刻的步長減小到時鐘周期的1/5,大幅度提高了測距精度。
假設估計出的測距誤差是72ns,如果不采用成型濾波器的方法,調(diào)整步長為50ns,調(diào)整一個時鐘后,會產(chǎn)生72-50=22ns的調(diào)整精度誤差。而采用成型濾波器后,調(diào)整的步長縮小為10ns,在發(fā)送時將第三個數(shù)據(jù)波形送到D/A轉換器轉換成模擬波形,再將模擬波形送出就可使調(diào)整精度的誤差降低到72-50-2
評論