基于高頻交流鏈接技術(shù)電容充電電源研究
當(dāng)前脈沖功率系統(tǒng),高壓電容通常采用線性電源諧振充電或傳統(tǒng)諧振高頻開關(guān)電源恒流充電。線性電源工作在工頻條件下,變壓器的體積龐大且笨重。此外,為滿足應(yīng)用的需求,輸出需要進(jìn)行充分濾波,通常需要大容量的高壓電容,高的儲能則需要為電源設(shè)計(jì)額外的保護(hù)系統(tǒng)。傳統(tǒng)諧振高頻開關(guān)電源采用諧振電路,電源內(nèi)部存在DC-link部分,通常為大容量的電解電容,體積和重量占整個電源較大的比重。隨著機(jī)動新概念武器的發(fā)展,對電源的體積和重量提出了更高要求?;?a class="contentlabel" href="http://www.biyoush.com/news/listbylabel/label/高頻交流鏈接">高頻交流鏈接技術(shù)的串聯(lián)諧振電容充電電源沒有線性整流和DC-link部分,功率密度大大提高。采用了串聯(lián)諧振技術(shù),使開關(guān)工作在零電流條件下,工作頻率進(jìn)一步提高。新穎的控制方式使得三相輸入電流能跟隨三相輸入相電壓,實(shí)現(xiàn)較高的電能質(zhì)量。
2 工作原理
變換器結(jié)構(gòu)如圖1所示,它由三相輸入濾波器、IGBT組成的矩陣開關(guān)、LC串聯(lián)諧振電路、高頻高壓變壓器和全橋高壓整流電路組成。三相輸入濾波器是由電感L和電容C組成的二階低通濾波器。濾波電容器采用Y型結(jié)構(gòu),也可采用△型,只是參數(shù)設(shè)計(jì)稍有些不同。濾波電容器除了用于降低回路中電流諧波,它主要起能量儲存的作用,供給串聯(lián)諧振電路和負(fù)載,減小三相交流電壓的畸變。矩陣開關(guān)由12只ICBT組成,每兩只IGBT組成一個雙向開關(guān),電流可以雙向流動,連接方式可以是兩只IGBT的c極相連,也可以是e極相連。6組雙向開關(guān)組成橋式整流結(jié)構(gòu),矩陣開關(guān)與串聯(lián)諧振電路相連,能實(shí)現(xiàn)零電流開關(guān)和能量的雙向流動。在工作過程中,通過檢測三相交流電壓和負(fù)載電壓,控制矩陣開關(guān)中IGBT的開關(guān)時序和開關(guān)時間,控制每一相向諧振電路提供的電荷量,使得三相輸入電流跟隨三相輸入相電壓變化。
3 工作過程分析
電源工作分3個過程:諧振電容Cr充電過程分為兩個過程,分別記為模式1和模式2;Cr放電只有一個過程,記為模式3。3個過程形成一個諧振周期,諧振電感電流iLr波形和諧振電容電壓uCr(t)波形如圖2所示。為了更好理解3個工作過程,引入三相輸入相電壓:
為分析方便,考察三相輸入相電壓的相位從0到6/π,此時三相輸入相電壓滿足|ua|≥|ub|≥|uc|,定義UM=|ua-ub|和UN=|ua-uc|。由于串聯(lián)諧振電路的諧振頻率(60 kHz)遠(yuǎn)高于工頻(50 Hz),在一個周期內(nèi),相電壓變化極小,因此分析時假定加載到諧振回路中電壓為恒定值。負(fù)載電容CL等效到初級的電容值遠(yuǎn)大于CL,則在一個諧振周期內(nèi),CL的電壓上升非常小,在分析過程中將其視為一個直流源。
在t0時刻,首先驅(qū)動VS2和VS12,UN加載到諧振電路上,a相和c相形成電流回路,iLr增加,電流特性由LC串聯(lián)諧振回路決定,同時Cr和負(fù)載電容CL開始充電,UCr和CL的電壓Uo開始上升。等效電路如圖3所示。假定模式1工作初始條件為:ILr(t0)=0,UCr(t0)=-2Uo。諧振電感電流和諧振電容電壓為:
在t0~t1時間段內(nèi)流出a相和c相電荷量為:
在t1時刻,驅(qū)動VS10,UM加載到諧振電路上,此時c相的電流被自然換流.a(chǎn)相和b相形成電流回路,iLr繼續(xù)按照串聯(lián)諧振電流特性變化,直至電流為零,此時UCr達(dá)到峰值。等效電路與圖3a類似,僅將UN換為UM即可。模式2的初始條件為:
t2時刻,驅(qū)動VS1,VS9,iLr反向流動,Cr開始放電,t3時刻電流為零。等效電路與模式2相同,但iLr反向。模式3初始條件:ILr(t2)=0,UCr(t2)=UM-Uo+IMZ。
則可知iLr(t)和uCr(t)的表達(dá)式為:
4 控制策略
一個諧振周期內(nèi),模式1和模式2的電流方向規(guī)定為正,正向電流的電荷量規(guī)定為從三相流出的電荷量,反向電流的電荷量為流回三相的電荷量,則從三相流出的凈電荷量為:
Q可視為從a相流出,而從c相和b相流出的電荷量分別為Q1和Q2-Q3。采用電荷控制理論,使得從a相和c相流出的電荷量正比于各自的相電壓,比例系數(shù)為k,其表達(dá)式為:
θ隨三相交流相電壓(0~π/6)及Uo變化的曲線如圖4a所示。由圖可知,隨著Uo的升高和三相交流相電壓的變化,θ單調(diào)增大,最大值為半個充電周期。θ的變化,從另一個角度說明隨著Uo的升高,輸出能量增大。
諧振電流周期fs隨三相交流相電壓及Uo變化的曲線如圖4b所示。可見,fs隨著Uo的升高,先變大后變小。隨著三相交流相電壓的變化,諧振電流周期也是先變大后變小。周期的最大值大約為6.47 rad。相比DC-link技術(shù)串聯(lián)諧振變換器的電流周期增大0.19 rad。而最大的周期出現(xiàn)在0.15 rad。
諧振電容器上剩余電壓隨三相交流相電壓和Uo變化曲線如圖4c所示。
諧振電容器上剩余電壓隨著uo升高而增大,隨三相交流電壓的變化先增大后減小,首末兩點(diǎn)電壓相同,最大電壓出現(xiàn)在相位為3/π點(diǎn)處。
5 實(shí)驗(yàn)結(jié)果
在上述原理分析的基礎(chǔ)上,設(shè)計(jì)了一臺電容充電電源的實(shí)驗(yàn)樣機(jī),主要參數(shù):交流輸入380 V,電源輸出電壓為50 kV,充電速率為60 kJ/s,諧振電容1.98μF,諧振電感2.25μH,開關(guān)頻率30 kHz。
圖5a示出三相交流輸入線電流iac與交流相電壓uac波形,uac,iac保持比例關(guān)系且同相位。使用電能分析儀測量功率因數(shù),測量值為0.99。充電初期和末期的開關(guān)電流如圖5b所示。由圖可見,隨著uo升高,切換時間從1μs增加到2μs,電流前半周期從6μs增加到7μs,后半周期由于分布電容的影響變小。
6 結(jié)論
推導(dǎo)出在電流斷續(xù)條件下,電源各個工作模式下的電流特性,研究了三相電網(wǎng)電壓和輸出電壓對開關(guān)切換時間和諧振電流周期的影響。設(shè)計(jì)了一臺基于高頻交流鏈接技術(shù)的電容充電電源的樣機(jī),開展實(shí)驗(yàn)研究。實(shí)驗(yàn)結(jié)果表明:應(yīng)用電荷控制方式,電網(wǎng)輸入端可達(dá)到很高的功率因數(shù),且開關(guān)切換時間(角度)和諧振電流的周期隨三相電網(wǎng)電壓和輸出電壓發(fā)生變化。
電容器相關(guān)文章:電容器原理
評論