如何做好非隔離式開關(guān)電源的PCB布局
一個(gè)良好的布局設(shè)計(jì)可優(yōu)化效率,減緩熱應(yīng)力,并盡量減小走線與元件之間的噪聲與作用。這一切都源于設(shè)計(jì)人員對(duì)電源中電流傳導(dǎo)路徑以及信號(hào)流的理解。
當(dāng)一塊原型電源板首次加電時(shí),最好的情況是它不僅能工作,而且還安靜、發(fā)熱低。然而,這種情況并不多見。
開關(guān)電源的一個(gè)常見問題是“不穩(wěn)定”的開關(guān)波形。有些時(shí)候,波形抖動(dòng)處于聲波段,磁性元件會(huì)產(chǎn)生出音頻噪聲。如果問題出在印刷電路板的布局上,要找出原因可能會(huì)很困難。因此,開關(guān)電源設(shè)計(jì)初期的正確PCB布局就非常關(guān)鍵。
電源設(shè)計(jì)者要很好地理解技術(shù)細(xì)節(jié),以及最終產(chǎn)品的功能需求。因此,從電路板設(shè)計(jì)項(xiàng)目一開始,電源設(shè)計(jì)者應(yīng)就關(guān)鍵性電源布局,與PCB布局設(shè)計(jì)人員展開密切合作。
一個(gè)好的布局設(shè)計(jì)可優(yōu)化電源效率,減緩熱應(yīng)力;更重要的是,它最大限度地減小了噪聲,以及走線與元件之間的相互作用。為實(shí)現(xiàn)這些目標(biāo),設(shè)計(jì)者必須了解開關(guān)電源內(nèi)部的電流傳導(dǎo)路徑以及信號(hào)流。要實(shí)現(xiàn)非隔離開關(guān)電源的正確布局設(shè)計(jì),務(wù)必牢記以下這些設(shè)計(jì)要素。
布局規(guī)劃
對(duì)一塊大電路板上的嵌入dc/dc電源,要獲得最佳的電壓調(diào)節(jié)、負(fù)載瞬態(tài)響應(yīng)和系統(tǒng)效率,就要使電源輸出靠近負(fù)載器件,盡量減少PCB走線上的互連阻抗和傳導(dǎo)壓降。確保有良好的空氣流,限制熱應(yīng)力;如果能采用強(qiáng)制氣冷措施,則要將電源靠近風(fēng)扇位置。
另外,大型無源元件(如電感和電解電容)均不得阻擋氣流通過低矮的表面封裝半導(dǎo)體元件,如功率MOSFET或PWM控制器。為防止開關(guān)噪聲干擾到系統(tǒng)中的模擬信號(hào),應(yīng)盡可能避免在電源下方布放敏感信號(hào)線;否則,就需要在電源層和小信號(hào)層之間放置一個(gè)內(nèi)部接地層,用做屏蔽。
關(guān)鍵是要在系統(tǒng)早期設(shè)計(jì)和規(guī)劃階段,就籌劃好電源的位置,以及對(duì)電路板空間的需求。有時(shí)設(shè)計(jì)者會(huì)無視這種忠告,而把關(guān)注點(diǎn)放在大型系統(tǒng)板上那些更“重要”或“讓人興奮”的電路。電源管理被看作事后工作,隨便把電源放在電路板上的多余空間上,這種做法對(duì)高效率而可靠的電源設(shè)計(jì)十分不利。
對(duì)于多層板,很好的方法是在大電流的功率元件層與敏感的小信號(hào)走線層之間布放直流地或直流輸入/輸出電壓層。地層或直流電壓層提供了屏蔽小信號(hào)走線的交流地,使其免受高噪聲功率走線和功率元件的干擾。
作為一般規(guī)則,多層PCB板的接地層或直流電壓層均不應(yīng)被分隔開。如果這種分隔不可避免,就要盡量減少這些層上走線的數(shù)量和長度,并且走線的布放要與大電流保持相同的方向,使影響最小化。
圖1a和1c分別是六層和四層開關(guān)電源PCB的不良層結(jié)構(gòu)。這些結(jié)構(gòu)將小信號(hào)層夾在大電流功率層和地層之間,因此增加了大電流/電壓功率層與模擬小信號(hào)層之間耦合的電容噪聲。
圖中的1b和1d則分別是六層和四層PCB設(shè)計(jì)的良好結(jié)構(gòu),有助于最大限度減少層間耦合噪聲,地層用于屏蔽小信號(hào)層。要點(diǎn)是:一定要挨著外側(cè)功率級(jí)層放一個(gè)接地層,外部大電流的功率層要使用厚銅箔,盡量減少PCB傳導(dǎo)損耗和熱阻。
功率級(jí)的布局
開關(guān)電源電路可以分為功率級(jí)電路和小信號(hào)控制電路兩部分。功率級(jí)電路包含用于傳輸大電流的元件,一般情況下,要首先布放這些元件,然后在布局的一些特定點(diǎn)上布放小信號(hào)控制電路。
大電流走線應(yīng)短而寬,盡量減少PCB的電感、電阻和壓降。對(duì)于那些有高di/dt脈沖電流的走線,這方面尤其重要。
圖2給出了一個(gè)同步降壓轉(zhuǎn)換器中的連續(xù)電流路徑和脈沖電流路徑,實(shí)線表示連續(xù)電流路徑,虛線代表脈沖(開關(guān))電流路徑。脈沖電流路徑包括連接到下列元件上的走線:輸入去耦陶瓷電容CHF;上部控制FET QT;以及下部同步FET QB,還有選接的并聯(lián)肖特基二極管。
圖3a給出了高di/dt電流路徑中的PCB寄生電感。由于存在寄生電感,因此脈沖電流路徑不僅會(huì)輻射磁場(chǎng),而且會(huì)在PCB走線和MOSFET上產(chǎn)生大的電壓振鈴和尖刺。為盡量減小PCB電感,脈沖電流回路(所謂熱回路)布放時(shí)要有最小的圓周,其走線要短而寬。
高頻去耦電容CHF應(yīng)為0.1μF~10μF,X5R或X7R電介質(zhì)的陶瓷電容,它有極低的ESL(有效串聯(lián)電感)和ESR(等效串聯(lián)電阻)。較大的電容電介質(zhì)(如Y5V)可能使電容值在不同電壓和溫度下有大的下降,因此不是CHF的最佳材料。
圖3b為降壓轉(zhuǎn)換器中的關(guān)鍵脈沖電流回路提供了一個(gè)布局例子。為了限制電阻壓降和過孔數(shù)量,功率元件都布放在電路板的同一面,功率走線也都布在同一層上。當(dāng)需要將某根電源線走到其它層時(shí),要選擇在連續(xù)電流路徑中的一根走線。當(dāng)用過孔連接大電流回路中的PCB層時(shí),要使用多個(gè)過孔,盡量減小阻抗。
圖4顯示的是升壓轉(zhuǎn)換器中的連續(xù)電流回路與脈沖電流回路。此時(shí),應(yīng)在靠近MOSFET QB與升壓二極管D的輸出端放置高頻陶瓷電容CHF.
圖5是升壓轉(zhuǎn)換器中脈沖電流回路的一個(gè)布局例子。此時(shí)關(guān)鍵在于盡量減小由開關(guān)管QB、整流二極管D和高頻輸出電容CHF形成的回路。
圖5,本圖顯示的是升壓轉(zhuǎn)換器中的熱回路與寄生PCB電感(a);為減少熱回路面積而建議采用的布局(b)。
圖6和圖7(略)提供了一個(gè)同步降壓電路的例子,它強(qiáng)調(diào)了去耦電容的重要性。圖6a是一個(gè)雙相12VIN、2.5VOUT/30A(最大值)的同步降壓電源,使用了LTC3729雙相單VOUT控制器IC.在無負(fù)載時(shí),開關(guān)結(jié)點(diǎn)SW1和SW2的波形以及輸出電感電流都是穩(wěn)定的(圖6b)。但如果負(fù)載電流超過13A,SW1結(jié)點(diǎn)的波形就開始丟失周期。負(fù)載電流更高時(shí),問題會(huì)更惡化(圖6c)。
在各個(gè)通道的輸入端增加兩只1μF的高頻陶瓷電容,就可以解決這個(gè)問題,電容隔離開了每個(gè)通道的熱回路面積,并使之最小化。即使在高達(dá)30A的最大負(fù)載電流下,開關(guān)波形仍很穩(wěn)定。
高DV/DT開關(guān)區(qū)
圖2和圖4中,在VIN(或VOUT)與地之間的SW電壓擺幅有高的dv/dt速率。這個(gè)結(jié)點(diǎn)上有豐富的高頻噪聲分量,是一個(gè)強(qiáng)大的EMI噪聲源。為了盡量減小開關(guān)結(jié)點(diǎn)與其它噪聲敏感走線之間的耦合電容,你可能會(huì)讓SW銅箔面積盡可能小。但是,為了傳導(dǎo)大的電感電流,并且為功率MOSFET管提供散熱區(qū),SW結(jié)點(diǎn)的PCB區(qū)域又不能夠太小。一般建議在開關(guān)結(jié)點(diǎn)下布放一個(gè)接地銅箔區(qū),提供額外的屏蔽。
如果設(shè)計(jì)中沒有用于表面安裝功率MOSFET與電感的散熱器,則銅箔區(qū)必須有足夠的散熱面積。對(duì)于直流電壓結(jié)點(diǎn)(如輸入/輸出電壓與電源地),合理的方法是讓銅箔區(qū)盡可能大。
多過孔有助于進(jìn)一步降低熱應(yīng)力。要確定高dv/dt開關(guān)結(jié)點(diǎn)的合適銅箔區(qū)面積,就要在盡量減小dv/dt相關(guān)噪聲與提供良好的MOSFET散熱能力兩者間做一個(gè)設(shè)計(jì)平衡。
功率焊盤形式
注意功率元件的焊盤形式,如低ESR電容、MOSFET、二極管和電感。圖8a(略)和8b(略)分別給出了不合理和合理的功率元件焊盤形式。
對(duì)于去耦電容,正負(fù)極過孔應(yīng)盡量互相靠近,以減少PCB的ESL.這對(duì)低ESL電容尤其有效。小容值低ESR的電容通常較貴,不正確的焊盤形式及不良走線都會(huì)降低它們的性能,從而增加整體成本。通常情況下,合理的焊盤形式能降低PCB噪聲,減小熱阻,并最大限度降低走線阻抗以及大電流元件的壓降。
大電流功率元件布局時(shí)有一個(gè)常見的誤區(qū),那就是不正確地采用了熱風(fēng)焊盤(thermal relief),如圖8a(略)所示。非必要情況下使用熱風(fēng)焊盤,會(huì)增加功率元件之間的互連阻抗,從而造成較大的功率損耗,降低小ESR電容的去耦效果。如果在布局時(shí)用過孔來傳導(dǎo)大電流,要確保它們有充足的數(shù)量,以減少阻抗。
評(píng)論