如何選擇電容器實現高性能的EMI濾波
電氣器噪聲可以以許多不同的方式引起。在數字電路中,這些噪聲主要由開關式集成電路,電源和調整器所產生,而在射頻電路中則主要由振蕩器以及放大電路產生。無論是電源和地平面上,還是信號線自身上的這些干擾都將會對系統的工作形成影響,另外還會產生輻射。
本文將重點討論多層陶瓷電容器,包括表面貼裝和引腳兩種類型。討論如何計算這些簡單器件的阻抗和插入損耗之間的相互關系。文中還介紹了一些改進型規(guī)格的測試,如引線電感和低頻電感,另外,還給出了等效電路模型。這些模型都是根據測得的數據導出的,還介紹了相關的測試技術。針對不同的制造工藝,測試了這些寄生參數,并繪制出了相應的阻抗曲線。
阻抗和插入損耗
所幸的是,電容器還算簡單的器件。由于電容器是一個雙端口器件,故僅有一種方法與傳輸線并接。不要將該器件看作一只電容器,更容易的方法是將其看作為一個阻抗模塊。當其與傳輸線并聯時,甚至可以將其視作為一個導納模塊(見圖1)。
圖1:將電容器視作為阻抗模塊。 |
Z0=傳輸線阻抗
??=阻抗模塊的相角
有一些插入點可以來觀察方程2。首先,對于一個高性能的陶瓷電容器來說,其相角在整個頻段中都非常接近±90°,只有諧振點附近除外(見圖2)。
圖2:1000-pF陶瓷電容器的典型阻抗幅相特性。 |
已知±90°的余弦接近0,故方程2可以被簡化為:
表1:1000-pF旁路電容器的阻抗和求得的插入損耗。 |
這些方程中的唯一問題就是需要知道一系列不同電容值的阻抗。
多層陶瓷電容器(MLCC)串聯模型
對于MLCC電容器來說,最簡單的(當然也是最有效的)模型是串聯模型(見圖3)。
圖3:陶瓷電容器的等效串聯模型。 |
該模型給出了適用于絕大多數表面貼裝MLCC的正確阻抗曲線。記住電容值將隨溫度和直流偏置而變化。等效串聯電阻(ESR)隨溫度、直流偏置和頻率變化,而等效串聯電感(ESL)卻基本保持不變。對阻抗來說,也許最重要的部分是諧振點,因為這是衰減最大的頻率。眾所周知,計算諧振頻率的公式是:
圖4:兩只0.1 μF電容器的阻抗曲線比較。 |
低電感電容的最大優(yōu)點體現在數字電路退耦中。利用如下簡單的電感方程:
引腳電容器
引腳電容相對于表面貼裝電容器,除了增加了引腳之外,其他并沒有什么不同。其等效模型與MLCC模型一樣,除了增加了引腳所產生的電感之外,見圖5。
評論