在本《電源設計小貼士》中,我們將研究一款可將高 AC 輸入電壓轉換為可用于電子能量計等應用的低 DC 電壓簡單電路。在這種特殊的應用中,無需將輸出電壓隔離于輸入電壓。此處,經過整流的 AC 輸入電壓可高達 375 VDC,同時數百毫安電流時的輸出電壓可在 5 伏以內。這些大容量應用通常受到成本的推動,因此要求低部件數量/低成本的電路。步降穩(wěn)壓器提供了一種低成本的解決方案,但在使用高電壓輸入實施時卻充滿挑戰(zhàn)。在連續(xù)模式下,該降壓穩(wěn)壓器的占空比為輸出電壓除以輸入電壓,即 400V 轉換到 5V 時占空比為 1.25%。如果我們在 100 kHz 下運行電源,則需要 125 nS 的導通時間,而由于開關速率限制的存在其通常是不切實際的。
圖 1 顯示一款解決占空比問題的一個電路。恒定導通控制器 (U1) 驅動一個高壓降壓功率級,其包含一個電平轉換電路 (Q2, Q3) 驅動的 P 通道FET (Q4),以將 400V 轉換為 5V。該控制器(我們的例子中使用 TPS64203)是本設計的關鍵。它擁有一個低靜態(tài)電流 35 uA),讓轉換器能夠以最小的 R2 和 R3 電阻功耗離線啟動。第二個關鍵因素是其提供短時 (600 nS) 導通柵極驅動脈沖來將最小開關頻率(連續(xù)導通模式下)升高至 20 kHz 以上的能力。Q1 用于電平轉換柵極驅動電壓至高端驅動器。來自 IC 的低壓輸出在 R4 上約為 5 伏,其使 Q1 和 R5 中出現固定電流。通過發(fā)射極輸出器到 P 通道 FET 柵極為 R5 提供電壓。電流也對 C4 充電,以為驅動電路供電。我們選擇 P 通道 FET 來簡化驅動電路。如果要使用一個 N 通道,則會要求一種能夠驅動 FET 柵極至輸入電壓以上來徹底增強器件的方法。
圖 2 MOSFET表現出較好的 ( 50nS) 開關速度
圖 2 顯示了兩個電路波形,其表明通過簡單的雙極驅動器可獲得較好的開關速度。低于 50 nS 的柵極驅動升降時間產生小于 30 nS 的漏極-開關時間。通過調節(jié)轉換至 P 通道FET的驅動電流可以增加速率,代價是更高的功耗。這種電路的效率約為 70%??紤]到功耗水平僅為 4 瓦,從 400V 轉換到 5V,并且電路既簡單又便宜的情況,這一效率已經不低了。這種設計的兩個不足是缺少短路和過電壓保護。但是,這種電路可能代表許多應用中一種高性價比的折衷方法。
評論