在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 電源與新能源 > 設計應用 > 分析開關模式電源的諧振坐標方法

            分析開關模式電源的諧振坐標方法

            作者: 時間:2013-08-05 來源:網(wǎng)絡 收藏
            設計時,最麻煩的部件是。設計的傳統(tǒng)方法沒有主開關的關斷瞬態(tài)期間的詳細說明。因此,傳統(tǒng)方式設計中的設計等式也不完全正確。本文將介紹設計和分析的新方法。諧振坐標提供了一個了解主開關關斷瞬態(tài)期間的簡單方式,并有助于輕松設計和分析RCD緩沖器。

            1. 引言

            從商業(yè)上講,因結構簡單、尺寸緊湊、重量輕和成本低而得到廣泛使用。但是它的主開關執(zhí)行硬開關操作,導致主開關上有較高的電壓尖峰和振蕩。主開關的電壓應力視電壓尖峰大小而增加。為減少電壓尖峰以便使用更低成本的低額定電壓的MOSFET,最廣泛的方法是RCD緩沖器網(wǎng)絡。即使緩沖器電壓隨緩沖器電阻降低而降低,但緩沖器網(wǎng)絡上的功耗增加,導致總系統(tǒng)效率降低。因此,RCD緩沖器網(wǎng)絡應優(yōu)化以同時符合主開關電壓應力和總系統(tǒng)效率兩個要求。

            本文將先介紹由主變壓器的漏電感而產(chǎn)生的電壓尖峰的傳統(tǒng)分析。將介紹描述關斷瞬態(tài)期間的簡單方式用于進一步分析。緩沖器電流將在緩沖器坐標中分析,以便提供更詳細的設計等式。

            2. RCD緩沖器設計和分析

            2.1 RCD緩沖器設計的一般方法

            圖1顯示具有RCD緩沖器的傳統(tǒng)


            圖1:傳統(tǒng)反激式轉換器

            RCD緩沖器電路用于箝位由漏電感Llk和主開關漏極至源極的電容CDS之間的諧振導致的電壓尖峰。有多種假定來描述工作原理以設計RCD緩沖器,如下所示:

            (1) Vsn>nVout和Vsn由于較大的Csn而幾乎恒定:

            (2) CDS=COSS+CTRANS,無論vDS(t)如何都恒定:

            (3)當主開關Q1關閉時,無次級端漏電感,因此iDS(t)可瞬時傳輸至次級端二極管電流iD1(t),其中Csn是緩沖器電容,CDS是主開關漏極和源極之間的有效電容,COSS是MOSFET的輸出電容,CTRANS是變壓器一次電路端子之間的有效電容,vDS(t)是主開關間的電壓,iDS(t)是流過主開關的電流,而Q1是主開關。

            圖2顯示緩沖器二極管傳導時的等效電路。


            圖2:緩沖器二極管接通期間的等效電路

            當開關Q1關閉時,主電流對Q1的COSS充電(同時對變壓器的CTRANS放電)。當COSS被充電至Vin+nVout時,次級端二極管接通,能量傳輸至次級端,并且對COSS持續(xù)充電,因為漏電感Llk仍有一些剩余能量。當Q1的vDS(t)增加至Vin+Vsn,緩沖器二極管Dsn接通,vDS(t)箝位在Vin+Vsn。當Dsn傳導時,Llk上的電壓為Vsn-nVout,這樣Dsn(ts)的導通時間可獲取如下:

            (1)

            其中Ipeak是關閉開關Q1之前的峰值漏極電流。有兩種方式計算緩沖器網(wǎng)絡中的功耗(Psn);通過Dsn提供的電源和Rsn中的功耗,如下所示:

            (2)

            其中fsw是反激式轉換器的開關頻率。因此,緩沖器電阻Rsn可由下列等式獲得:

            (3)

            這是查找緩沖器電阻Rsn的傳統(tǒng)方式。但是,L-C諧振幾步后,峰值漏極電流Ipeak被降低了一些。因此,等式(3)可能誤導被過度設計的系統(tǒng)。

            讓我們使用諧振坐標得出實際峰值漏極電流,以避免在下一節(jié)過度設計RCD緩沖器。

            2.2 諧振坐標中的RCD緩沖器設計和分析

            本節(jié)將使用諧振坐標設計RCD緩沖器。僅設計緩沖器時,無需分析整個反激式操作模式。圖3顯示每個模式的等效電路,圖4顯示反激式轉換器中的開關MOSFET的vDS(t)。


            圖3:關閉主開關后顯示的每個模式的等效電路(按順序依次為模式1至4)


            圖4:關閉開關后的vDS(t)

            在模式1中,電感(Llk和Lm)中的電流對CDS充電,直至其電壓達到Vin+nVout,其中Lm是變壓器的磁化電導。在t1,次級二極管接通,并且磁化電導的兩端箝位在反映的輸出電壓nVout上。在模式2中,通過CDS和Llk之間的諧振,CDS上的電壓增加到Vin+Vsn,從而接通緩沖器二極管。因此,漏極電壓箝位在Vin+Vsn(在模式3期間)。CDS和Llk之間的諧振由于減幅如模式2一樣在模式4中恢復。

            當電感和電容與DC電壓源(Vdc)串聯(lián)諧振時,電容上的電壓和通過電感的電流可繪制在一個平面中。在平面上,X軸是電壓,Y軸是電流。如果將L-C回路的特性阻抗乘以Y軸而使兩個軸的單位相同,電壓和電流的軌跡將顯示一個圓,圓的原點在(Vdc, 0),半徑為起點和原點之間的長度。使用這種圖形方式來理解諧振,就很容易找到圖4中t2的實際峰值漏極電流。在模式1~4期間,iDS(t)和vDS(t)繪制在諧振坐標中,如圖5所示。


            圖5:諧振坐標中的模式分析

            模式1中是圓,圓的原點在(Vin,0),起點在(0,ZmIpeak)。它一直持續(xù)到vDS(t)達到Vin+nVout,如圖4中所示。根據(jù)圖5的模式1,圓的等式如下:

            (4)

            其中Zm是Lm+Llk和CDS、√((Lm+Llk)/CDS)的特性阻抗。

            模式2中是橢圓,橢圓的原點在(Vin+nVout,0),起點在(A, B)。通過坐標映射,圓變成橢圓,因為特性阻抗從√((Lm+Llk)/CDS)變?yōu)椤?Llk/CDS)。根據(jù)圖5的模式2,橢圓的等式如下:

            (5)

            緩沖器二極管在模式2的末端接通,即點(C,D)。因此,當緩沖器二極管接通時實際峰值電流為D/Zm,即D/√((Lm+Llk)/CDS)。根據(jù)等式(4)和(5),實際峰值電流Ipk,sn如下:

            (6)

            應在等式(3)中使用Ipk,sn而非Ipeak,以獲得更精確的Rsn。

            通常情況下,根據(jù)Ipeak近似值選擇Rsn,相應地Rsn是一個過度設計的值,因為Psn被高估。使用Ipk,sn,我們可以得到一個更精確、更小的Psn估計值,因此Rsn也更大。

            3. 結論

            我們可以使用諧振坐標找到精確的緩沖器峰值電流。根據(jù)等式(3)和(6),Llk、Ipk,sn和fsw應減小,而CDS應增加,以減少緩沖器損失。但這可能會帶來一些副作用,如更高的開關損耗、更大尺寸的變壓器等等。因此,在設計時必須考慮到所有因素。本文中提供的精確等式將幫助系統(tǒng)設計人員輕松設計RCD緩沖器。

            標號

            [1] 飛兆半導體應用指南“AN-4137,采用FPS的離線反激式轉換器的設計準則”。



            評論


            相關推薦

            技術專區(qū)

            關閉