在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 非傳統(tǒng)MOSFET方案提高功率CMOS器件功效的方法

            非傳統(tǒng)MOSFET方案提高功率CMOS器件功效的方法

            作者: 時(shí)間:2014-01-21 來源:網(wǎng)絡(luò) 收藏

            衷于從縮小晶體管來提高密度和性能。在相同的成本上具有更快的速度、更大的內(nèi)存,是一件多么美妙的事情!越來越多的在工藝上的進(jìn)步目前已能使完好的特征尺寸升級到90nm技術(shù)節(jié)點(diǎn)。然而,在深層納米尺寸滿足對漏電和性能的需要卻迅速地把傳統(tǒng)的晶體管逼入困境。要使性能得到繼續(xù)的升級,人們正在采用新型材料和結(jié)構(gòu)來改善傳統(tǒng)的CMOS工藝。在超過32nm及以上的技術(shù)上,面對著功率性能前所未有的挑戰(zhàn),晶體管可能通過一系列的跳躍式創(chuàng)新得到發(fā)展嗎?盡管答案仍在探索之中,從金屬/高K柵堆疊、新型應(yīng)變硅到多柵器件等等新型材料和器件結(jié)構(gòu)競相發(fā)起這場革命。

            本文引用地址:http://www.biyoush.com/article/226739.htm

            當(dāng)晶體管忙于開關(guān)時(shí),微小的晶體管會消耗能量,因此依靠封裝更多的晶體管來提高密度并不湊效。不同工藝的能耗可通過動態(tài)功率來測得:

            動態(tài)功率=CVdd2F

            C=器件電容

            Vdd=電源電壓

            F=開關(guān)頻率

            此外,作為一種并不完全的開關(guān),即使當(dāng)它們關(guān)閉時(shí)也會漏電,這一點(diǎn)對待機(jī)功耗起到作用。

            待機(jī)功耗=I漏電xVdd

            I漏電=漏電電流

            當(dāng)你把10億只晶體管集成到一個(gè)100mm2面積的裸片上時(shí),功耗就會迅速增加,且情況正變得更糟。對功耗進(jìn)行管理是當(dāng)前從系統(tǒng)、設(shè)計(jì)到工藝的所有人員的壓倒一切的活動。降低功耗并不難,難在你要跟性能進(jìn)行平衡。

            短溝道靜電學(xué)

            由于工藝和材料的限制,在我們急于壓縮門柵和溝道尺寸之時(shí),源/漏結(jié)點(diǎn)和門柵電介質(zhì)的升級卻不沒能跟上不能步伐。這導(dǎo)致短溝道靜電更加不足,當(dāng)器件關(guān)閉時(shí),門柵對源-漏的漏電影響更弱(也就是亞門限模式)。隨著在門柵與超出正常界線的源/漏之間的溝道電荷分配的增加(如圖1),會導(dǎo)致亞門限漏電增加,這 點(diǎn)可從門限電壓出乎我們意料的降低中反映出來(圖2)。

            非傳統(tǒng)MOSFET方案提高功率CMOS器件功效的方法

            圖1:器件電荷分配的影響有以下三種情況:(a)統(tǒng)一的溝道滲雜;(b)超淺結(jié);(c)高的容器植入摻雜。

            非傳統(tǒng)MOSFET方案提高功率CMOS器件功效的方法

            圖2:以門柵極長度(Lg)為函數(shù)的器件閥值電壓(VT)及源/漏漏電的曲線。對于更小的Lg,短溝道效應(yīng)的開始造成VT減少。這一點(diǎn)同時(shí)伴隨著源?漏漏電的指數(shù)增長。要緩減這一狀況,我們可使源和漏結(jié)點(diǎn)(xj)更淺且更陡(圖1b),或者通過增加結(jié)點(diǎn)周圍的溝道摻雜,來屏蔽靜電對源/漏的影響(降低耗盡寬度) (1c)。由于低阻抗超淺結(jié)點(diǎn)特別具有挑戰(zhàn)性,我們在進(jìn)行伸縮時(shí),大量的增加溝道摻雜來抑制漏電。增加摻雜會帶來兩種不良的副作用,會導(dǎo)致開關(guān)電流 (Ion/Ioff)比急劇降低,該比值對于好的開關(guān)應(yīng)被最大化。通過實(shí)現(xiàn)低亞門限擺幅(S),靜電的開關(guān)比可(圖3)以最大化。一個(gè)簡單的一維MOS電 容器的S描述忽略了由[1]給出的源/漏的電荷分配的影響:

            S = 1/(亞門限斜率) = 2.3 kT/q (1 + Cdm/Cox) ~ 2.3 kTq (1 + 3Tox/Wdm)

            T = 溫度

            Cdm = 損耗電容

            Cox =門柵電容

            Tox =門柵電介質(zhì)厚度。

            Wdm = 溝道損耗寬度

            取決于柵極與溝道之間的電容耦合(Cdm/Cox),S測量門柵在關(guān)閉與打開溝道之間擺動的良好程度。增加溝道摻雜,而不使門柵電介質(zhì)厚度(Tox)相應(yīng)地減少,會導(dǎo)致S的增加。對于短溝道,S也可通過門柵與短溝道之間的電荷分配得到增加,這也會受到終接電壓的影響。顯然,在維持良好短溝道控制時(shí),如


            上一頁 1 2 3 4 下一頁

            關(guān)鍵詞: MOSFET CMOS器件

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉