常用汽車電子系統(tǒng)應用LED驅動解決案例分析
使用LM3424驅動LED和執(zhí)行熱電流控制具有多項優(yōu)點。首先,不需要在外部配備大部分復雜的部件(例如多個運算放大器),因為這些在集成電路中已集成。在最簡單的配置中,實現熱返送只需要少量標準電阻器和負溫度系數(NTC)熱敏電阻。如果需要更高的精度,設計師可以使用LM94022等精確溫度傳感器替換RBIAS和RNTC。此外,LM3424使用戶可以設置LED電流開始熱返送的溫度(TBK,通過RREF1,2、RBIAS和RNTC設置)和電流返送的斜率(通過RGAIN設置)。這使設計師可以使用少量外部部件精確重現制造商數據表中提供的電流額定值下降曲線,同時提高隨溫度變化表現出的性能,如圖3所示。
圖3 隨溫度變化的額定值下降曲線示例
如圖2使用LM3424所示,集成電路將在到達某溫度時返送LED電流,此時,LED電流為零。這與LED作為系統(tǒng)中主要熱發(fā)生器的情況不同。對于大燈組件等應用,設計師可能想要設置一項安全功能,即使LED可能在超出安全工作區(qū)的條件下工作,也始終能夠提供光輸出。對于此類情況,LED電流與溫度曲線將如圖4中示例所示。雖然LM3424沒有這項內置功能,但這可以使用外部箝位電路輕松實現,并且防止TSENSE針腳上的電壓低于預規(guī)定值。
圖4 隨溫度變化的額定值下降曲線示例(最低值非零)
使用SEPIC穩(wěn)壓器的大燈示例
雖然汽車電氣系統(tǒng)通常在12V~14VDC條件下工作,但在特殊情況下,向系統(tǒng)部件的供電電壓可能超出或低于正常工作值范圍。例如,在冷啟動情況下,系統(tǒng)供電可能為4。5V或更低,在負載突降狀況下,電壓可能在40V到60V之間。如果在這些特殊情況下仍需要LED工作或保護,設計師可能希望選擇可提供恒定LED電流的功率級,而不管電源電壓與LED組電壓的關系如何。一種采用SEPIC的開關穩(wěn)壓器可以執(zhí)行升壓和降壓操作,如圖5所示。
圖5 SEPIC轉換器基本拓撲結構
SEPIC轉換器的效率可能不如降壓或升壓轉換器,但拓撲結構具有多項優(yōu)點。除了具有升壓和降壓功能外,另一項尤其適用于汽車電子系統(tǒng)應用的優(yōu)點是CSEPIC電容器提供了輸入和輸出之間的隔離。SEPIC轉換器的不足是需要兩個電感器,但兩個電感器可以輕松地纏繞在同個芯上,而不是作為兩個分立的部件。圖6顯示同樣使用LM3421控制器的應用電路示例。
圖6 SEPIC配置中的LM3421
使用串聯/并聯LED的組合尾燈
另一個常見的照明應用是尾燈/閃光燈組件,也被稱為組合尾燈(RCL)。對于在12V~14V直流電源供電中具有3V典型正向電壓(VF)的LED來說,一個可能的解決方案是使用降壓開關穩(wěn)壓器。由于最低值為12V,因此只允許3個LED串聯??梢圆捎脠D7所示的串聯/并聯組合,因為在一個串聯燈組中所有必備的LED的總電壓將超過12V。
圖7 串聯/并聯陣列
對于此應用的調光和閃光部分,可以使用多種方法降低向LED陣列提供的功率。最常用的一種方法是脈寬調制(PWM)調光,這種方法通常使用專門的邏輯信號高速開啟和關閉LED以控制總體光輸出。這種方法簡單有效,但可能極少用于汽車電子系統(tǒng)應用,因為在線束中需要一根額外的線路用于調光信號。另一種方法稱為雙線調光,向LED驅動器提供的電源定期中斷以控制調光。1。5A整體式開關穩(wěn)壓器LM3406具有此功能,其真實電流平均值實現更嚴密的光輸出控制。集成的N通道MOSFET不提供控制器集成電路具有的靈活性,因此降低了板上的復雜性。圖8顯示了使用雙線調光方法的LM3406應用示例。
圖8 雙線調光的LM3406配置
LM3406包含輸入電壓感應針腳(VINS)使照明設計師可以魚和熊掌兼得,因為他們可以實現標準PWM調光的優(yōu)點,同時降低系統(tǒng)接線復雜性(照明部件距離控制電路較遠)。阻擋二極管D2允許輸入電容器CIN保持與LM3406的連接,這與非雙線調光設置相同,因此使LM3406在調光階段可以保持完全供電。這比簡單的開啟和關閉零部件來實現調光更為高效,因為LM3406的所有內部支持電路在調光過程中保持通電。因此,部件可以立即進入調光階段,集成電路沒有恢復和運行延時。這樣,在雙線調光設置中,LM3406的工作方式與輸出控制中使用邏輯調光針腳的方式相同。標準PWM設置需要的附加部件只有阻擋二極管D2、VINS下拉電阻器RPD和用于實現理想斬波開關S1的部件。
使用串聯LED和升壓/降壓穩(wěn)壓器組合的RCL示例
在并聯燈組陣列中,配置LED通過允許LED功率級在12V~14V軌道下直接運行,極大地簡化系統(tǒng)設計,但并聯/串聯組合也同樣具有一些缺點。在查看LED制造商數據表時,可以注意到兩個重要的事實:LED的光輸出與流經的電流成正比,LED的動態(tài)電阻隨著VF而變化。制造商按VF、光通量和顏色(或色溫)對LED分級。例如,典型的VF級別可能包含范圍從3。27V到3。51V(25℃時)的LED,所有級別的整個范圍可以從2。8V到4。2V。由于LED制造商通常向客戶銷售多個級別的LED,關注成本的設計師依賴所有LED都具有緊密VF分布是不實際的。
下例顯示了VF變化的影響。在實驗中,使用圖9所示兩種設置收集數據。一種設置用于4個LED(每個LED都具有專門的電流源),另一種設置用于并聯的4個LED(共享一個電流源)。表1所示數據在25℃加電后5秒內測得,以最大限度降低LED自發(fā)熱的影響。
圖9 實驗性設置
表1 多電流源設置(左)和單電流源設置(右)的數據
從這些數據可以明顯看出LEDVF變化在并聯運行時將導致不均勻電流分布。即使對于分級的LED,也可以看到類似的影響,并聯陣列中各串聯燈組的電流分布不均。改進并聯燈組間電流分布的一種方式是向各燈組增加鎮(zhèn)流電阻器。這有助于使電流分布均勻化,但存在的主要問題是由于鎮(zhèn)流電阻器的功耗而降低了效率。
根據具體的設計,上述問題的影響可能可以忽略。但是,如果系統(tǒng)設計師對上述影響存有顧慮,可以采用單個串聯燈組作為首選拓撲結構。在這種解決方法中,仍可以使用LM3406等部件,但將增大系統(tǒng)復雜性,因為需要新前端部件用于傳輸超出12V~14V的電源電壓為LED驅動器供電。然后,LED驅動器降低此新電壓,為單個LED燈組供電。這可以通過在直流電源和LM3406之間增加升壓DC/DC功率級輕松實現,如圖10所示。通過此拓撲結構,串聯燈組中的所有LED均具有相同的電流,無論各LED的VF值是多少。
圖10 升壓和降壓組合
還需要注意的一個問題是為什么應包含降壓功率級,而不是直接使用升壓穩(wěn)壓器運行LED。這兩種拓撲結構之間的重要區(qū)別是輸出電容器:升壓穩(wěn)壓器需要輸出電容器,而降壓穩(wěn)壓器可以使用或不使用輸出電容器操作。如果設置中使用輸出電容器,即使在穩(wěn)壓器已進入調光模式并停止向LED供電后,仍可以為LED輸送電流一段時間。因此,在LED輸出實際停止前,還需要額外的時間使輸
評論