在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 模擬技術 > 設計應用 > 基于皮衛(wèi)星的數(shù)字化智能航天電源系統(tǒng)設計

            基于皮衛(wèi)星的數(shù)字化智能航天電源系統(tǒng)設計

            作者: 時間:2011-03-09 來源:網(wǎng)絡 收藏

            進入21世紀以來,微小衛(wèi)星(micro-satellite)以其較高的功能密度,先進的技術性能以及發(fā)射與運行過程中的高度的靈活性,逐漸成為國際航天技術研究領域的重要發(fā)展方向。按照當前國際通行的衛(wèi)星分類方法,重量在0.1~1kg之間的微小衛(wèi)星可稱為皮衛(wèi)星(pico-satellite)[1]。對于以皮衛(wèi)星為代表的微小衛(wèi)星而言,由于其太陽能帆板面積十分有限,同時面臨復雜多變的空間環(huán)境,因此要求衛(wèi)星電源系統(tǒng)具有高效率、高能量密度與控制自主化的特點,這是目前一般工業(yè)電源所難以達到的。

            本文針對皮衛(wèi)星電源系統(tǒng)的特點開發(fā)了一套智能化、高效率的數(shù)字化電源系統(tǒng),其智能化設計主要體現(xiàn)在:通過多種測量電路對電源系統(tǒng)各關鍵節(jié)點的電壓、電流等重要信號進行實時采集、處理與分析,隨時掌握電源系統(tǒng)的能量輸入、貯存與輸出以及實時效率等重要參數(shù);在數(shù)據(jù)采集基礎上,通過微控制器及其控制軟件的處理,合理地采取峰值功率跟蹤(MPPT)、充放電調(diào)節(jié)(BCR/BDR)等控制策略,控制電源系統(tǒng)工作狀態(tài),跟蹤最大輸入功率點;針對不同空間任務需求與能量界面參數(shù),通過調(diào)整軟件靈活地進行電源運行實驗;通過串口通信方式與上位機通信,為衛(wèi)星電源系統(tǒng)測控以及數(shù)據(jù)儲存與傳輸提供了良好條件。

            2 皮衛(wèi)星智能電源系統(tǒng)的硬件設計

            皮衛(wèi)星智能電源系統(tǒng)基于“太陽能電池陣——電源控制系統(tǒng)——蓄電池組”拓撲結(jié)構(gòu)進行設計[2]。電源控制系統(tǒng)作為整個電源系統(tǒng)的核心部分,主要由以下幾個部分構(gòu)成:微控制單元、一次母線電壓調(diào)節(jié)單元(即峰值功率跟蹤單元)、二次母線電壓調(diào)節(jié)單元(即放電調(diào)節(jié)單元)、充電調(diào)節(jié)單元、電壓電流信號采集單元、信號處理單元、串行通信單元等。

            電源控制系統(tǒng)的基本工作流程為:根據(jù)預先設定的空間環(huán)境參數(shù),由太陽電池陣模擬器形成電源系統(tǒng)的初始輸入;初始輸入經(jīng)過一次母線電壓調(diào)節(jié)單元的調(diào)節(jié),形成與蓄電池組工作電壓相匹配的一次母線電壓7.2V~8.4V,同時完成對輸入峰值功率的跟蹤與鎖定;供給二次母線的功率經(jīng)過二次母線調(diào)節(jié)器的調(diào)節(jié),分別為星上負載提供5V與3.3V兩種二次母線電壓;電壓電流信號采集單元不斷采集初始輸入、一次母線、蓄電池組、二次母線等各關鍵節(jié)點的電壓電流信號,經(jīng)由電壓跟隨器、一階濾波電路與多路信號選通芯片,送入微控制單元進行A/D轉(zhuǎn)換;微控制器根據(jù)各關鍵節(jié)點信號,經(jīng)過進一步的處理與分析,向各級母線調(diào)節(jié)單元及充電控制單元發(fā)出控制信號,同時通過串行通信單元向上位機傳送數(shù)據(jù)。

            1.1 微控制單元

            微控制單元電路以ATMEL 公司推出的ATmega8L單片機為核心,配以MAX 397雙8通道模擬多路器與MAX 6129參考電壓源等外圍設備組成,如圖2所示。ATmega8L單片機是一款基于AVR RISC的低功耗CMOS的8位高檔單片機,具有接近1 MIPS/MHZ的高速運行處理能力。ATmega8L具有23路可編程多功能I/O端口,八通道10位A/D轉(zhuǎn)換和三通道16位以內(nèi)的PWM輸出功能,因此在系統(tǒng)中完成10位信號A/D轉(zhuǎn)換與處理,MPPT算法實現(xiàn)以及31.25KHz PWM控制信號輸出等重要功能。

            1.2 一次母線電壓調(diào)節(jié)單元(峰值功率跟蹤單元)

            一次母線電壓調(diào)節(jié)單元電路以Boost DC/DC電壓變換電路為核心,同時增加了以兩個MOSFET組合而成的一次母線控制開關,如圖3所示。Boost電壓變換電路由MOSFET開關管Q1,續(xù)流二極管D3、D4,儲能電感L2與濾波電容C13組成,升壓變換比滿足

            M = Vout/Vin = 1/ (1-D) (1)

            由于一次母線輸出電壓Vout被鉗位在蓄電池組工作電壓,即7.2V~8.4V區(qū)間某特定值,則調(diào)整微處理單元發(fā)出的PWM控制信號占空比D,可調(diào)整輸入電壓(即太陽電池陣輸出電壓)Vin。在此基礎上,調(diào)用峰值功率跟蹤(MPPT)算法,實現(xiàn)太陽電池陣輸出功率最大化。

            1.3 電流電壓信號采集單元

            信號采集單元以MAX4373F電流傳感與分壓精密電阻為核心,采集初始輸入、一次母線、蓄電池組、5/3.3V二次母線等6處節(jié)點的電壓電流信號。信號送入集成運放LM234進行電壓跟隨,再經(jīng)過一階R-C濾波電路濾去紋波,最終送入MAX397等待A/D轉(zhuǎn)換。

            1.4 充電調(diào)節(jié)器單元

            蓄電池組充電調(diào)節(jié)器由n-MOSFET與p-MOSFET組合電子開關構(gòu)成,具體結(jié)構(gòu)同圖3右側(cè)的電子開關。充電過程中,MOSFET驅(qū)動器輸出高電平信號,則n-MOSFET IRF3205導通,使p-MOSFET IRF4905的G極電壓近似為0,此時IRF4905的S極與G極間電壓為正,使IRF4905導通。當蓄電池組達到滿充電壓時,微處理單元控制電子開關關斷。

            1.5 二次母線電壓調(diào)節(jié)單元(放電調(diào)節(jié)單元)

            由于輸出電壓為特定值,二次母線電壓調(diào)節(jié)單元中采用了MAX649(5V輸出)、MAX651(3.3V輸出)的Buck型DC/DC降壓變換控制芯片。MAX649、MAX651芯片將4.0V~16.5V范圍內(nèi)的任意的一次母線電壓分別轉(zhuǎn)換為3.3V與5V,供給星上各分系統(tǒng)的能量需求。當輸出電流處于10mA~1.5A范圍內(nèi),芯片功率轉(zhuǎn)換效率可達到90%以上。

            放電調(diào)節(jié)器同樣由受微控制單元驅(qū)動的n-MOSFET與p-MOSFET組合電子開關構(gòu)成。

            1.6 串行通信單元

            串行通信單元電路以雙通道串口通信驅(qū)動芯片MAX232為核心,使用串口通信標準EIA-RS-232C協(xié)議。MAX232將單片機輸出的TTL電平信號 “邏輯1電平+5V,邏輯0電平0V”,轉(zhuǎn)化為上位機RS-232C信號“邏輯1電平-5~-15V,邏輯0電平+5~+15V”。

            3 皮衛(wèi)星智能電源系統(tǒng)的軟件與算法設計

            3.1 皮衛(wèi)星電源系統(tǒng)控制軟件基本流程

            電源系統(tǒng)控制軟件流程主要以“信號巡回檢測→PWM控制信號調(diào)整→系統(tǒng)運行參數(shù)傳輸→再次信號巡回檢測”過程為主干,并在“巡檢→控制→數(shù)據(jù)傳輸”過程中增加充電控制、放電控制等分支控制功能??刂栖浖捎媚K化思想設計,由系統(tǒng)初始化模塊,多路A/D轉(zhuǎn)換模塊、數(shù)字濾波模塊、數(shù)據(jù)分析與控制模塊、串口通信模塊等組成[3]。

            3.2 基于模糊控制邏輯的電導增量MPPT算法

            皮衛(wèi)星智能電源系統(tǒng)主要依靠軟件中的MPPT算法實現(xiàn)其功率的最大化。MPPT算法原理在于:在一定的溫度與光強條件下,衛(wèi)星電源使用的太陽電池陣的輸出電壓與電流存在著非線性的關系,當輸出電壓到達特定值Vmp,與對應電流值Imp之間乘積達到最大值,即為太陽電池陣峰值輸出功率點Pmp。

            在峰值功率點處,輸出功率對輸出電壓的微分

            dP/dV = d(VI)/dV = I+V dI/dV = 0  ?。?)

            進一步推導,可得:-dI/dV = I/V   ?。?)

            由此關系,建立基于模糊控制邏輯的電導增量MPPT算法。

            其中,V(n),V(n-1),I(n),I(n-1)分別為當前時刻與上一時刻的太陽電池陣輸出電壓、電流值,D(n),D(n+1)分別為當前時刻與下一時刻的占空比,△D為占空比調(diào)整步長。根據(jù)采集的電流、電壓信號,微處理單元不斷增減PWM信號占空比,利用Boost電壓變換電路調(diào)整太陽電池陣的輸出電壓,從而使工作點到達峰值功率點Pmp,衛(wèi)星電源系統(tǒng)獲得最大的輸出功率。

            進一步,在基本算法的基礎上引入模糊控制邏輯,其作用為加快峰值功率跟蹤的速度。模糊邏輯控制器的兩個輸入變量分別取為當前時刻電導增量差值e(n)= -dI/dV- I/V和占空比調(diào)整步長△D(n),輸出變量取為下一時刻的占空比調(diào)整步長△D(n+1)。然后建立相應的隸屬度函數(shù)與模糊規(guī)則庫,此處從略。模擬實驗表明,在標準空間環(huán)境條件(AM0,25℃)下,引入模糊控制邏輯后的電導增量MPPT算法,其峰值功率跟蹤所需時間減少了60%以上。

            4 結(jié)論

            本文針對皮衛(wèi)星電源系統(tǒng)的特點開發(fā)了一套智能化的航天電源系統(tǒng),該電源系統(tǒng)以ATmega8L單片機為核心,對電源系統(tǒng)各關鍵節(jié)點的信號進行實時采集與處理,并運用峰值功率跟蹤等控制策略,控制系統(tǒng)工作狀態(tài)。模擬實驗表明,該電源系統(tǒng)在標準空間環(huán)境條件(AM0,25℃)下,峰值功率跟蹤性能良好,最大輸入功率達到約2.75W,電源整體效率保持在82%以上。

            本文創(chuàng)新點:采用ATmega8L單片機為核心控制器,在航天電源系統(tǒng)中實現(xiàn)了運行參數(shù)實時采集、系統(tǒng)自主功率跟蹤、充放電調(diào)節(jié)以及上、下位機數(shù)據(jù)通信等智能化控制方法;提出了基于模糊控制邏輯的電導增量MPPT算法,快速實現(xiàn)對電源系統(tǒng)輸入峰值功率的跟蹤。



            評論


            相關推薦

            技術專區(qū)

            關閉