改進(jìn)型TTL門電路—抗飽和TTL電路
肖特基勢(shì)壘二極管的工作特點(diǎn)如下:
(1)它和PN結(jié)一樣,同樣具有單向?qū)щ娦?,這種鋁-硅勢(shì)壘二極管導(dǎo)通電流的方向是從鋁到硅。
?。?)AL-SiSBD的導(dǎo)通閾值電壓較低,約為0.4~0.5V ,比普通硅PN結(jié)約低0.2V。
?。?)勢(shì)壘二極管的導(dǎo)電機(jī)構(gòu)是多數(shù)載流子 ,因而電荷存儲(chǔ)效應(yīng)很小。
根據(jù)前面的學(xué)習(xí),我們已經(jīng)知道,BJT工作在飽和時(shí) ,發(fā)射結(jié)和集電結(jié)都處在正向偏置,集電結(jié)正向偏置電壓越大,則表明飽和程度越深。
為了限制BJT的飽和深度,在BJT的基極和集電極并聯(lián)上一個(gè)導(dǎo)通閾值電壓較低的肖特基二極管,如下圖所示。
當(dāng)沒(méi)有SBD時(shí),隨著基級(jí)電壓的升高,電流沿著藍(lán)線方向流動(dòng)。由于SBD的作用,當(dāng)基級(jí)電壓大于0.4V時(shí), SBD首先電導(dǎo)通,電流沿著紅線方向流動(dòng)(如下圖所示),從而使T的基極電流不會(huì)過(guò)大(而且使T的集電結(jié)正向偏壓將被鉗制在0.4V左右),因此SBD起到抵抗過(guò)飽和的作用,因而又將這種電路稱為抗飽和電路,使電路的開(kāi)關(guān)時(shí)間大為縮短。
下圖為肖特基TTL(STTL)與非門的典型電路。與基本TTL與非門電路相比,作了若干改進(jìn)。在基本的TTL電路中 ,T1、T2和T3工作在深度飽和區(qū),管內(nèi)電荷存儲(chǔ)效應(yīng)對(duì)電路的開(kāi)關(guān)速度影響很大?,F(xiàn)在除T4外,其余的BJT均采用SBD鉗位,以達(dá)到明顯的抗飽和效果。其次,基本電路中的所有電阻值這里幾乎都減半。這兩項(xiàng)改進(jìn)導(dǎo)致門電路的開(kāi)關(guān)時(shí)間大為縮短。由于電阻值的減小也必然會(huì)引起門電路功耗的增加。
STTL門電路還有以下三點(diǎn)對(duì)基本TTL電路的性能作了改進(jìn):
?。?)二極管D被由T4和T5所組成的復(fù)合管所代替,當(dāng)輸出由低電平向高電平過(guò)渡時(shí),由于復(fù)合管電路的電流增益很大,輸出電阻很小
,從而減小了電路對(duì)負(fù)載電容的充電時(shí)間。
?。?)電路輸入端所加的SBD—DA和DB,用來(lái)減小由門電路之間的連線而引起的雜散信號(hào)。
(3)基本電路中的Re2(1kΩ)改為由T6與Rc6 、Rb6的組合電路所代替。這個(gè)組合電路是有源非線性電阻。當(dāng)其兩端的電壓(發(fā)射極e2對(duì)地)較低時(shí),呈現(xiàn)很大的電阻,而當(dāng)其兩端的電壓達(dá)到0.7V左右時(shí),則呈現(xiàn)很小的電阻。這樣,當(dāng)與非門的全部輸入端由低電平轉(zhuǎn)向高電平時(shí),有源電阻開(kāi)始不導(dǎo)通使T3很快達(dá)到飽和;反之,當(dāng)電路的全部輸入端(或其中之一)由高電平轉(zhuǎn)向低電平時(shí),T2和T3將截止,由于T3飽和時(shí),VBE=0.7V,在轉(zhuǎn)換開(kāi)始的瞬間,有源電阻的阻值很小
T3基區(qū)存儲(chǔ)的電荷通過(guò)此低阻回路很快消散。由于這個(gè)緣故,有源非線性電路稱為有源下拉電路 ,它與有源上拉電路是對(duì)應(yīng)的 。意即將 VBE3從0.7 V很快拉到0V,從而使輸出電壓很快升高,即提高了開(kāi)關(guān)速度。
基于上述特點(diǎn),STTL與非門具有較為理想的傳輸特性。與基本TTL反相器的傳輸特性相比,C點(diǎn)不再存在了,由B點(diǎn)直接下降到D點(diǎn),即傳輸特性變化非常陡峭,見(jiàn)下圖。
除典型的肖特基型(STTL)外,尚有低功耗肖特基型(LSTTL)、先進(jìn)的肖特基型(ASTTL),先進(jìn)的低功耗型(ALSTTL)等,它們的技術(shù)參數(shù)各有特點(diǎn),是在TTL工藝的發(fā)展過(guò)程中逐步形成的。
TTL門電路的各種系列的性能比較
|
評(píng)論