數字頻率合成精解:用DDS器件產生高質量波形
圖5.利用AD9834或AD9838 DDS的調諧字選擇器實現(xiàn)FSK編碼。
相移鍵控(PSK) 是另一種簡單的數據編碼形式。在PSK中,載波的頻率保持不變,通過改變發(fā)射信號的相位來傳遞信息??梢岳枚喾N方案來實現(xiàn)PSK。最簡單的方法通常稱為二進制PSK(即BPSK),只采用兩個信號相位:0°(邏輯1)和180°(邏輯0)。各位的狀態(tài)取決于前一位的狀態(tài)。如果波的相位不變,則信號狀態(tài)將保持不變(低或高)。如果波的相位改變180°,即相位反轉,則信號狀態(tài)將改變(低變?yōu)楦?,或高變?yōu)榈停SK編碼可以輕松在DDS產品中實現(xiàn),因為多數器件都有一個獨立的輸入寄存器(相位寄存器),可以加載相位值。該值被直接添加到載波的相位,而不改變其頻率。更改該寄存器的內容將調制載波的相位,結果產生一個PSK輸出。對于要求高速調制的應用,內置相位寄存器對的AD9834和AD9838允許其PSELECT引腳上的信號在預加載的相位寄存器之間變換,以根據需要調制載波。
更復雜的PSK采用四個或八個波相位。這樣,每當相位發(fā)生變化時,二進制數據的傳輸速率將高于BPSK調制。在四相位調制 (正交 PSK),中,可能的相位角度為0°, +90°, ?90°, 和 +180°;每次相位變換可能代表兩個信號因子AD9830, AD9831, AD9832, 和 AD9835 提供四個相位寄存器,通過連續(xù)更新寄存器的不同相位偏移,可以實現(xiàn)復雜的相位調制方案。
以同步模式利用多個DDS元件實現(xiàn)I/Q功能
許多應用要求產生兩個或兩個以上具有已知相位關系的正弦波或方波信號。一個常見的例子是同相和正交調制(I/Q),在這種技術中,在0°和90°相位角度從載波頻率獲得信號信息??梢杂孟嗤脑磿r鐘來運行兩個單獨的DDS元件,以輸出可以直接控制和操作其相位關系的信號。在圖6中,用一個基準時鐘對AD9838器件編程;相同的RESET引腳用于更新兩個器件。這樣,可以實現(xiàn)簡單的I/Q調制
RESET必須在上電后以及向DDS傳輸任何數據之前初始化。結果可將DDS輸出置于已知相位,使其成為共同的參考角度,以便同步多個DDS器件。當新數據被同時送至多個DDS器件時,DDS之間可以保持相關相位關系,或者通過相位偏移寄存器可以預測性調整多個DDS之間的相對相位偏移。AD983x系列DDS產品擁有12位相位分辨率,有效分辨率為0.1°。
圖6.同步兩個DDS元件。
有關同步多個DDS器件的更多信息,請參閱應用筆記AN-605 同步多個基于DDS的頻率合成器AD9852.
網絡分析
電子世界中的諸多應用都需要收集和解碼來自網絡的數據,例如模擬測量和光學通信系統(tǒng)。正常情況下,系統(tǒng)分析要求是為了以幅度和相位已知的頻率模擬電路或系統(tǒng),并分析通過系統(tǒng)的響應信號的特性。
對響應信號收集的信息用于確定關鍵系統(tǒng)信息。測試網絡的范圍(見圖7)可能非常寬泛,包括電纜完整性測試、生物醫(yī)學傳感和流速測量系統(tǒng)。無論何時,只要基本要求是產生基于頻率的信號并將響應信號的相位和幅度與原始信號進行比較,或者是要通過系統(tǒng)激勵一系列頻率,或者要求具有不同相位關系(如具有I/Q功能的系統(tǒng)中)的測試信號,則可利用直接數字頻率合成IC,方便、優(yōu)雅地通過軟件以數字方式控制激勵頻率和相位。
評論