電磁感應(yīng)式無線充電核心技術(shù)(二):數(shù)據(jù)傳輸
前面我們講解到了電磁感應(yīng)式無線充電核心技術(shù)(一):諧振控制,下面我們將繼續(xù)探討電磁感應(yīng)式無線充電核心技術(shù)的數(shù)據(jù)傳輸部分。
數(shù)據(jù)傳輸
在電磁感應(yīng)式電力系統(tǒng)中最重要的技術(shù)問題就是必需要能識別放置于發(fā)射線圈上的物體,感應(yīng)電力就與烹調(diào)用的電磁爐一樣會發(fā)射強大的電磁波能量,若直接將此能量打在金屬上則會發(fā)熱造成危險;為解決此問題各廠商發(fā)展可識別目標(biāo)之技術(shù),經(jīng)過幾年的發(fā)展確認(rèn)藉由受電端接收線圈反饋訊號由供電端發(fā)射線圈接收訊號為最好的解決方式,為完成在感應(yīng)線圈上數(shù)據(jù)傳輸?shù)墓δ転橄到y(tǒng)中最重要的核心技術(shù)。在傳送電力之感應(yīng)線圈上要穩(wěn)定傳送數(shù)據(jù)非常困難,主要載波是用在大功率的電力傳輸,其會受到在電源使用中的各種干擾狀況,另外先前也提到這是一個變頻式的控制系統(tǒng),所以主載波工作頻率也不會固定。因為困難所以先前廠商推出的技術(shù)有除了感應(yīng)線圈供應(yīng)電力外,另外在建立一個無線通信頻道,例如紅外線、藍(lán)芽、RFID標(biāo)簽、WiFi…等,但外加這些模塊已經(jīng)違背的成本原則,這個產(chǎn)品為充電器,成本一定要控制的相當(dāng)?shù)筒趴杀皇袌鏊邮?,所以利用感?yīng)線圈本身作數(shù)據(jù)傳輸為業(yè)界必采用的方式。
利用感應(yīng)電力之線圈進(jìn)行數(shù)據(jù)傳輸會遇到兩個問題,就是如何發(fā)送數(shù)據(jù)與如何接收數(shù)據(jù),原理同RFID的數(shù)據(jù)傳輸方式,供電端線圈上發(fā)送主載波打到受電端線圈上,再由受電端電路上控制負(fù)載變化來進(jìn)行反饋,在現(xiàn)行的感應(yīng)電力設(shè)計中為單向傳輸,也就是電力能量(LC振蕩主載波)由供電端發(fā)送到受電端,而受電端反饋資料碼到供電端,而受電端收到供電端的能量只有強弱之分沒有內(nèi)含通訊成份,這個數(shù)據(jù)碼傳送的機制也只有受電端靠近后收到電力能量才能反饋,在供電端未提供能量的狀況下并無法進(jìn)行數(shù)據(jù)碼傳送,乍看來只是半套的通訊機制在感應(yīng)電力系統(tǒng)中卻非常實用,因為滿足了系統(tǒng)所需要的功能:供電端辨識受電端后開啟發(fā)送能量進(jìn)行電力傳輸,受電端傳回電力狀況由供電端進(jìn)行調(diào)整。
參考圖(六)中qi規(guī)格書中受電端接收電力與數(shù)據(jù)反饋架構(gòu),其中可以看到有兩種設(shè)計架構(gòu),分別是電阻式與電容式兩種。電阻式調(diào)制反饋訊號的方式源自被動式RFID技術(shù),利用接收線圈阻抗切換反饋訊號到發(fā)射線圈進(jìn)行讀取,運用在感應(yīng)式電力上由美國ACCESS BUSINESS GROUP (Fulton) 所申請之美國專利公開號20110273138 WIRELESS CHARGING SYSTEM (臺灣公開號201018042 無線充電系統(tǒng))內(nèi)容中有提到系利用切換開關(guān)位于接收端整流器后方的負(fù)載電阻,即圖(六)中的Rcm使線圈上的阻抗特性變化反饋到供電線圈上,經(jīng)由供電線圈上的偵測電路進(jìn)行解析變化,再有供電端上的處理器內(nèi)軟件進(jìn)行譯碼動作。參考圖(七)在專利說明書中,F(xiàn)ig.7中表示供電線圈上的訊號狀況,當(dāng)Rcm上的開關(guān)導(dǎo)通時,拉低受電線圈上的阻抗反饋到供電線圈上使其振幅變大,在編碼的方式采用UART通訊方式中asynchronous serial format(異步串聯(lián)格式)進(jìn)行編碼,即在固定的計時周期下該時間點是否有發(fā)生調(diào)制狀態(tài)變化進(jìn)行判讀邏輯數(shù)據(jù)碼,但這個編碼方式可以發(fā)線將會有一段周期的時間持續(xù)在調(diào)制狀態(tài)。參考圖(八)為qi規(guī)格書中的數(shù)據(jù)傳輸格式,可以看到是由一個2KHz的計時頻率進(jìn)行數(shù)據(jù)調(diào)制與譯碼的數(shù)據(jù)傳送頻率,經(jīng)由推算在一個調(diào)至狀態(tài)下最長會有一個周期的時間在調(diào)制狀態(tài)。UART通訊方式中調(diào)制狀態(tài)的長短并沒有影響到系統(tǒng)中的功能,但在感應(yīng)式電力系統(tǒng)中調(diào)制狀態(tài)會影響到供電的狀態(tài),原因是供電端的主載波本身是用來傳送電力的,透過供電端與受電端線圈耦合的效果能傳送強大的電流驅(qū)動力,而受電端的電阻負(fù)載需要承受驅(qū)動電流進(jìn)行反饋,當(dāng)功率加大后在Rcm上所承受的功率也會增加,且在調(diào)制期間原要通往受電端輸出的電流也會被Rcm所分流,所以在調(diào)制期間受電端的輸出能力會被損耗;另外調(diào)制的時間會因為傳送頻率提高而縮短,因為在感應(yīng)式電源系統(tǒng)中主載波的工作頻率受于組件與電磁干擾法規(guī)限制下只能在較低的頻率下運作(約100~200KHz),而數(shù)據(jù)是靠主載波上的調(diào)制狀態(tài)傳送,所以數(shù)據(jù)傳送頻率需要遠(yuǎn)低于主載波頻率下才能順利運作,在前述條件的沖突下可以發(fā)現(xiàn)當(dāng)感應(yīng)電力系統(tǒng)設(shè)計的功率提高后,電阻負(fù)載的數(shù)據(jù)調(diào)制方式為不可行,因為在調(diào)制電路上的電阻器會有相當(dāng)長的周期在導(dǎo)通的狀態(tài)造成功率消耗。
圖(六)qi規(guī)格書中受電端接收電力與數(shù)據(jù)反饋架構(gòu)
評論