意法半導(dǎo)體:聚焦工業(yè)4.0以及先進(jìn)邊緣人工智能
數(shù)字化轉(zhuǎn)型席卷全球,它推動企業(yè)提高生產(chǎn)效率、改善醫(yī)療服務(wù)質(zhì)量,加強(qiáng)樓宇、公用設(shè)施和交通網(wǎng)絡(luò)的安全和能源管理。數(shù)字化的核心賦能技術(shù)包括云計算、數(shù)據(jù)分析、人工智能 (AI) 和物聯(lián)網(wǎng) (IoT)。數(shù)字化一個重要的趨勢是把更多工作任務(wù)下沉到通常部署在物聯(lián)網(wǎng)邊緣的智能設(shè)備上,這對設(shè)備提出了響應(yīng)更快、能效更高的要求。邊緣側(cè)的智能設(shè)備應(yīng)用重點(diǎn)集中在幾個領(lǐng)域,比如工業(yè)及工廠自動化、泛智能家居應(yīng)用,以及包括智能交通、智能電網(wǎng)等的智慧城市和基礎(chǔ)設(shè)施應(yīng)用。不同領(lǐng)域會有不同的邊緣智能處理需求,意法半導(dǎo)體根據(jù)任務(wù)需求的區(qū)別可以為客戶提供MCU 和MPU 不同的解決方案,微處理器(MPU)系統(tǒng)通常更加復(fù)雜,處理性能、系統(tǒng)擴(kuò)展性和數(shù)據(jù)安全性更高,而微控制器(MCU) 系統(tǒng)的優(yōu)勢是簡單和集成度高。
本文引用地址:http://www.biyoush.com/article/202405/458618.htm在技術(shù)演進(jìn)過程中,AI逐漸成熟并被廣泛應(yīng)用到各個領(lǐng)域, AI最終目的就是速度更快在大的數(shù)據(jù)模型里面迅速找到想要的答案,邊緣AI則是希望能夠更高效的在邊緣端實(shí)現(xiàn)部分?jǐn)?shù)據(jù)庫搜索和算法以更快速獲取所需的答案。相比于現(xiàn)在爆火的大模型,邊緣AI的目的就是把大的數(shù)據(jù)模型經(jīng)過不斷地細(xì)分,然后下沉到邊緣端來做運(yùn)算,有幾十個或上千個邊緣端來完成一個大的任務(wù)。這種大的數(shù)據(jù)模型經(jīng)過客戶不斷地細(xì)分,再分到某幾個點(diǎn)上時可以通過一個邊緣AI 來完成原來需要服務(wù)器才能完成的任務(wù)。舉例來說,原來一條產(chǎn)線上有多個機(jī)器視覺、目標(biāo)識別的設(shè)備,通過一個大算力的X86或者幾個X86再加上一個GPU的平臺來把這個任務(wù)完成?,F(xiàn)在通過一些下沉的方式可以有十幾個、二十幾個邊緣 AI的小設(shè)備來分擔(dān)多個任務(wù),比如專門識別缺陷或?qū)iT做目標(biāo)分類的一些應(yīng)用,而達(dá)到原來需要一個大服務(wù)器來完成的任務(wù)。在減少書傳輸過程的同時,實(shí)現(xiàn)了降低功耗、降低成本的目的。
ST把高性能的MPU里面集成了NPU的目的就是要將AI任務(wù)下沉或分解到本地的邊緣AI 上,這樣不僅AI部署的成本更低、應(yīng)用更靈活、速度和整個系統(tǒng)集成方式更快,因為邊緣AI 的工作更單一所以效率會更高。邊緣嵌入式MPU中集成多個NPU處理單元將是未來嵌入式運(yùn)算的趨勢。這種趨勢得益于異構(gòu)計算架構(gòu)能夠讓客戶的AI應(yīng)用更靈活,比如在大的數(shù)據(jù)處理上可以通過一個高算力核來做,在實(shí)時性的信號采集和監(jiān)控上可以通過一個實(shí)時的MCU核來做,這種異構(gòu)方式讓一顆 MPU可以同時滿足實(shí)時處理又帶來高算力能力。
意法半導(dǎo)體的新一代STM32MP2微處理器(MPU)將為構(gòu)建這個不斷發(fā)展的數(shù)字世界的新一代設(shè)備提供動力。這些設(shè)備包括工業(yè)控制器和機(jī)器視覺系統(tǒng)、掃描儀、醫(yī)療可穿戴設(shè)備、數(shù)據(jù)聚合器、網(wǎng)關(guān)、智能家電以及工業(yè)和家庭機(jī)器人等。STM32MP2是意法半導(dǎo)體面向邊緣AI應(yīng)用的重點(diǎn)產(chǎn)品,主要的應(yīng)用方向包括了工業(yè)及工廠自動化、泛智能家居領(lǐng)域,智能網(wǎng)關(guān)、家居網(wǎng)關(guān)之類以及智慧城市系列的智慧交通、智慧基礎(chǔ)設(shè)施等等。STM32MP2系列產(chǎn)品內(nèi)置一個1.35tops NPU來處理AI的算法,但是AI生態(tài)系統(tǒng)不僅僅可以跑在NPU上,也可以跑在CPU和GPU上面。STM32MP2 MPUs為要求苛刻且時間敏感的工作任務(wù)、人工智能推理和通信而專門設(shè)計,同時具有先進(jìn)的網(wǎng)絡(luò)安全性。作為一款真正的異構(gòu)處理引擎,在64 位Arm Cortex-A35 CPU主處理器之外還集成一顆Cortex-M33微控制器(MCU),此外還配備了圖形處理器(GPU)、神經(jīng)網(wǎng)絡(luò)處理器(NPU)和視頻處理器(VPU)。根據(jù)處理器的負(fù)載情況和應(yīng)用需求,AI任務(wù)可以運(yùn)行在CPU、GPU或NPU上,以實(shí)現(xiàn)最佳性能和能效,釋放應(yīng)用潛力。在AI 執(zhí)行引擎方面,首選NPU執(zhí)行AI應(yīng)用,如果算力需求更高,那么可以把CPU與CPU同時運(yùn)用起來,提升邊緣側(cè)計算能力,識別速度會更快。STM32MP2能效很高,系統(tǒng)中無需設(shè)計主動散熱機(jī)制,從而帶來更小的尺寸、靜音運(yùn)行、更高的可靠性和更低的功耗等優(yōu)勢。ST 微處理器與Yocto Linux的無縫集成簡化了的開發(fā)過程,降低了產(chǎn)品創(chuàng)新的難度。
那么在AI算力上,如何讓NPU、GPU、CPU同時加持AI或邊緣算力的算法,根據(jù)意法半導(dǎo)體不同的分布式采取的方式,可以讓任務(wù)部署到不同單元上面進(jìn)行算力有效調(diào)配。在低功耗和功耗平衡上考慮,第一選擇1.35 TOPS的NPU單元,NPU在激活時會消耗功率,但它是為能效而設(shè)計的,消耗的功率明顯低于執(zhí)行相同AI模型的CPU。第二選擇Cortex-A35內(nèi)核 這兩個就是出于功耗與性能平衡之間的選擇。在NPU上全速跑某一個算法, NPU可能會出現(xiàn)一些功率峰值,但SOC消耗的能量將比僅由CPU執(zhí)行任務(wù)時消耗的能量少得多。在NPU上跑好處之一是讓CPU完全可以空閑下來做其他任務(wù),不做其他任務(wù)可以休眠。這種方式的整體功耗是偏低的。
邊緣側(cè)AI應(yīng)用部署和云端略有不同,首先要有數(shù)據(jù)模型進(jìn)行數(shù)據(jù)模擬訓(xùn)練,意法半導(dǎo)體不僅支持工程師使用自己的數(shù)據(jù)模型,還可為開發(fā)者提供面向應(yīng)用的優(yōu)化模型庫,用戶可以選擇其中的一個模型來建立邊緣AI計算的能力。為了服務(wù)MPU的邊緣側(cè)應(yīng)用,意法半導(dǎo)體還提供離線編譯器支持桌面或云端的模型優(yōu)化、量化和轉(zhuǎn)換應(yīng)用,確保用戶可以在本地主機(jī)完成相關(guān)任務(wù)操作。STM32 模型庫提供了4 類模型,第一類是運(yùn)動姿勢估算,第二類是圖像分類,語義分割、物體檢測等等。
這里所有模型ST均免費(fèi)提供給工程師來使用的,這些模型ST托管在GitHub上,客戶可以通過自己的任何一個應(yīng)用抓取任何一個模型,訓(xùn)練自己的代碼,驗證自己的應(yīng)用和這個模型選擇是否適合你的AI邊緣應(yīng)用。物聯(lián)網(wǎng)硬件安全是開發(fā)者在開發(fā)可信設(shè)備時追求的永恒目標(biāo)。難點(diǎn)在于為MCU 嵌入式硬件帶來高安全性,實(shí)現(xiàn)MPU級別的處理性能,同時保證出色的成本效益,這三個標(biāo)準(zhǔn)在市場上通常無法同時滿足。在采用這些新的STM32H7 MCU后,設(shè)備廠商可以更快、更經(jīng)濟(jì)地開發(fā)智能家電、智能樓宇控制器、工業(yè)自動化和個人醫(yī)療設(shè)備,滿足終端市場用戶日益增長的需求。具體用例包括增加更豐富多彩的圖形用戶界面,同時執(zhí)行多個不同的功能。這些設(shè)計往往需要用微處理器(MPU) 才能實(shí)現(xiàn)。
STM32H7R和STM32H7S兩款微控制器集成了其NeoChrom GPU圖形處理器,能夠?qū)崿F(xiàn)MPU 級別的圖形用戶界面(GUI),具有豐富的色彩,支持動畫播放和3D圖效。這兩款MCU 還集成了顯示控制器,能夠處理絢麗的高清彩色用戶界面,在過去,小小的微控制器很難勝任這個工作。運(yùn)行圖形用戶界面僅占用大約10%的主CPU性能,因此,目標(biāo)應(yīng)用能夠提供媲美智能手機(jī)的用戶體驗,同時還能運(yùn)行邊緣人工智能、通信和實(shí)時控制等要求苛刻的應(yīng)用程序。不過,H7R 的GPU 是2.5D的,只能跑圖形顯示的東西,這個系列的AI只能跑在MCU的處理內(nèi)核上。
(本文來源于《EEPW》2024.5)
評論