基礎(chǔ)知識之SiC功率器件
SiC半導(dǎo)體
1. SiC材料的物性和特征
SiC(碳化硅)是一種由Si(硅)和C(碳)構(gòu)成的化合物半導(dǎo)體材料。 不僅絕緣擊穿場強(qiáng)是Si的10倍,帶隙是Si的3倍,而且在器件制作時可以在較寬范圍內(nèi)控制必要的p型、n型,所以被認(rèn)為是一種超越Si極限的功率器件材料。 SiC中存在各種多型體(結(jié)晶多系),它們的物性值也各不相同。 用于功率器件制作,4H-SiC最為合適。
本文引用地址:http://www.biyoush.com/article/202403/456612.htm2. 功率器件的特征
SiC的絕緣擊穿場強(qiáng)是Si的10倍,因此與Si器件相比,能夠以具有更高的雜質(zhì)濃度和更薄的厚度的漂移層作出600V~數(shù)千V的高耐壓功率器件。 高耐壓功率器件的阻抗主要由該漂移層的阻抗組成,因此采用SiC可以得到單位面積導(dǎo)通電阻非常低的高耐壓器件。
理論上,相同耐壓的器件,SiC的單位面積的漂移層阻抗可以降低到Si的1/300。 而Si材料中,為了改善伴隨高耐壓化而引起的導(dǎo)通電阻增大的問題,主要采用如IGBT(Insulated Gate Bipolar Transistor : 絕緣柵極雙極型晶體管)等少數(shù)載流子器件(雙極型器件),但是卻存在開關(guān)損耗大 的問題,其結(jié)果是由此產(chǎn)生的發(fā)熱會限制IGBT的高頻驅(qū)動。 SiC材料卻能夠以高頻器件結(jié)構(gòu)的多數(shù)載流子器件(肖特基勢壘二極管和MOSFET)去實現(xiàn)高耐壓,從而同時實現(xiàn) “高耐壓”、“低導(dǎo)通電阻”、“高頻” 這三個特性。 另外,帶隙較寬,是Si的3倍,因此SiC功率器件即使在高溫下也可以穩(wěn)定工作。
SiC SBD
1. 器件結(jié)構(gòu)和特征
SiC能夠以高頻器件結(jié)構(gòu)的SBD(肖特基勢壘二極管)結(jié)構(gòu)得到600V以上的高耐壓二極管(Si的SBD最高耐壓為200V左右)。
因此,如果用SiC-SBD替換現(xiàn)在主流產(chǎn)品快速PN結(jié)二極管(FRD:快速恢復(fù)二極管),能夠明顯減少恢復(fù)損耗。 有利于電源的高效率化,并且通過高頻驅(qū)動實現(xiàn)電感等無源器件的小型化,而且可以降噪。 廣泛應(yīng)用于空調(diào)、電源、光伏發(fā)電系統(tǒng)中的功率調(diào)節(jié)器、電動汽車的快速充電器等的功率因數(shù)校正電路(PFC電路)和整流橋電路中。
2. SiC-SBD的正向特性
SiC-SBD的開啟電壓與Si-FRD相同,小于1V。 開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度設(shè)計得低,開啟電壓也可以做得低一些,但是這也將導(dǎo)致反向偏壓時的漏電流增大。 ROHM的第二代SBD通過改進(jìn)制造工藝,成功地使漏電流和恢復(fù)性能保持與舊產(chǎn)品相等,而開啟電壓降低了約0.15V。 SiC-SBD的溫度依存性與Si-FRD不同,溫度越高,它的導(dǎo)通阻抗就會增加,從而VF值也增加。 不易發(fā)生熱失控,所以可以放心地并聯(lián)使用。
3. SiC-SBD的恢復(fù)特性
Si的快速PN結(jié)二極管(FRD:快速恢復(fù)二極管)在從正向切換到反向的瞬間會產(chǎn)生極大的瞬態(tài)電流,在此期間轉(zhuǎn)移為反向偏壓狀態(tài),從而產(chǎn)生很大的損耗。 這是因為正向通電時積聚在漂移層內(nèi)的少數(shù)載流子不斷地進(jìn)行電傳導(dǎo)直到消亡(該時間也稱為積聚時間)。 正向電流越大,或者溫度越高,恢復(fù)時間和恢復(fù)電流就越大,從而損耗也越大。 與此相反,SiC-SBD是不使用少數(shù)載流子進(jìn)行電傳導(dǎo)的多數(shù)載流子器件(單極性器件),因此原理上不會發(fā)生少數(shù)載流子積聚的現(xiàn)象。由于只產(chǎn)生使結(jié)電容放電程度的小電流,所以與Si-FRD相比,能夠明顯地減少損耗。 而且,該瞬態(tài)電流基本上不隨溫度和正向電流而變化,所以不管何種環(huán)境下,都能夠穩(wěn)定地實現(xiàn)快速恢復(fù)。 另外,還可以降低由恢復(fù)電流引起的噪音,達(dá)到降噪的效果。
評論