在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 設(shè)計(jì)應(yīng)用 > 利用噪聲頻譜密度評估軟件定義系統(tǒng)中的ADC

            利用噪聲頻譜密度評估軟件定義系統(tǒng)中的ADC

            作者:ADI公司 David Robertson和Gabriele Manganaro 時(shí)間:2020-12-30 來源:電子產(chǎn)品世界 收藏

            不斷豐富的高速和極高速ADC以及數(shù)字處理產(chǎn)品正使過采樣成為寬帶和射頻系統(tǒng)的實(shí)用架構(gòu)方法。半導(dǎo)體技術(shù)進(jìn)步為提升速度以及降低成本做出了諸多貢獻(xiàn)(比如價(jià)格、功耗和電路板面積),讓系統(tǒng)設(shè)計(jì)人員得以探索轉(zhuǎn)換和處理信號的各種方法——無論使用具有平坦噪聲頻譜密度的寬帶轉(zhuǎn)換器,或是使用在目標(biāo)頻段內(nèi)具有高動(dòng)態(tài)范圍的帶限Σ-Δ型轉(zhuǎn)換器。這些技術(shù)改變了設(shè)計(jì)工程師對信號處理的認(rèn)識,以及他們定義產(chǎn)品規(guī)格的方式。

            本文引用地址:http://www.biyoush.com/article/202012/421708.htm

            噪聲頻譜密度(NSD)及其在目標(biāo)頻段內(nèi)的分布,能夠讓其在數(shù)據(jù)轉(zhuǎn)換過程中更好的被濾除.。

            比較在不同速度下工作的系統(tǒng),或者查看軟件定義系統(tǒng)如何處理不同帶寬的信號時(shí),噪聲頻譜密度(NSD)可以說比信噪比(SNR)更為有用。它不能取代其他規(guī)格,但會是分析工具箱中的一個(gè)有用參數(shù)指標(biāo)。

            我的目標(biāo)頻段內(nèi)有多少噪聲?

            數(shù)據(jù)轉(zhuǎn)換器數(shù)據(jù)手冊上的SNR表示滿量程信號功率與其他所有頻率的總噪聲功率之比。

            image.png

            圖1 9 dB調(diào)制增益的圖形表示:保留全部信號,丟棄7?8噪聲

            現(xiàn)在考慮一個(gè)簡單情況來比較SNR和NSD,如圖1所示。假設(shè)ADC時(shí)鐘頻率為75 MHz。對輸出數(shù)據(jù)運(yùn)行快速傅里葉變換(FFT),圖中顯示的頻譜為從直流到37.5 MHz。本例中,目標(biāo)信號是唯一的大信號,且碰巧位于2 MHz附近。對于白噪聲(大部分情況下包含量化噪聲和熱噪聲)而言,噪聲均勻分布在轉(zhuǎn)換器的奈奎斯特頻段內(nèi),本例中為直流至37.5 MHz。

            由于目標(biāo)信號在直流與4 MHz之間,故可相對簡單地應(yīng)用數(shù)字后處理以濾除或拋棄一切高于4 MHz的頻率(僅保留紅框中的內(nèi)容)。這里將需要丟棄7?8噪聲,保留所有信號能量,從而有效SNR改善9 dB。換句話說,如果知道信號位于頻段的一半中,那么事實(shí)上可以在僅消除噪聲的同時(shí),丟棄另一半頻段。

            這就引出了一條有用的經(jīng)驗(yàn)法則:存在白噪聲時(shí),調(diào)制增益可使過采樣信號的SNR額外改善3 dB/倍頻程。在圖1示例中,可將此技巧應(yīng)用到三個(gè)倍頻程中(系數(shù)為8),從而使SNR改善9 dB。

            當(dāng)然,如果信號處于直流和4 MHz之間某處,那么就不需要使用快速75 MSPS ADC來捕捉信號。只需9 MSPS或10 MSPS便能滿足奈奎斯特采樣定理對帶寬的要求。事實(shí)上,可以對75 MSPS采樣數(shù)據(jù)進(jìn)行1/8抽取,產(chǎn)生9.375 MSPS有效數(shù)據(jù)速率,同時(shí)保留目標(biāo)頻段內(nèi)的噪底。

            正確進(jìn)行抽取很重要。如果只是每8個(gè)樣本丟棄7個(gè),那么噪聲會折疊或混疊回到目標(biāo)頻段內(nèi),這樣將得不到任何SNR改善。必須先濾波再抽取,才能實(shí)現(xiàn)調(diào)制增益。

            即便如此,雖然理想的濾波器會消除一切噪聲,實(shí)現(xiàn)理想3 dB/倍頻程的調(diào)制增益,但實(shí)際濾波器不具備此類特性。在實(shí)踐中,所需的濾波器阻帶抑制量與試圖實(shí)現(xiàn)多少調(diào)制增益成函數(shù)關(guān)系。另外應(yīng)注意,“3 dB/倍頻程”的經(jīng)驗(yàn)法則是基于白噪聲假設(shè)。這是一個(gè)合理的假設(shè),但并非適用于一切情況。

            一個(gè)重要的例外情況是動(dòng)態(tài)范圍受非線性誤差或通帶中的其他雜散交調(diào)分量影響。在這些情況下,“濾波并丟棄”方法不一定能濾除雜散分量,可能需要更細(xì)致的頻率算法。

            將SNR和采樣速率轉(zhuǎn)換為噪聲頻譜密度

            當(dāng)頻譜中存在多個(gè)信號時(shí),比如FM頻段內(nèi)有許多電臺,情況會變得愈加復(fù)雜。若要恢復(fù)任一信號,更重要的不是數(shù)據(jù)轉(zhuǎn)換器的總噪聲,而是落入目標(biāo)頻段內(nèi)的轉(zhuǎn)換器噪聲量。這就需要通過數(shù)字濾波和后處理來消除所有帶外噪聲。

            有多種方法可以減少落入紅框內(nèi)的噪聲量。其中一種是選擇具有更好SNR(噪聲更低)的ADC?;蛘咭部梢允褂孟嗤琒NR的ADC并提供更快的時(shí)鐘(比如150 MHz),從而讓噪聲分布在更寬的帶寬內(nèi),使紅框內(nèi)的噪聲更少。

            NSD進(jìn)入視野

            這就提出了一個(gè)新問題:如要快速比較轉(zhuǎn)換器濾除噪聲的性能,有沒有比SNR更好的規(guī)格?

            此時(shí)就會用到噪聲頻譜密度(NSD)。用頻譜密度(通常以相對于每赫茲帶寬的滿量程的分貝數(shù)為單位,即dBFS/Hz)來刻畫噪聲,便可比較不同采樣速率的ADC,從而確定哪個(gè)器件在特定應(yīng)用中可能具有最低噪聲。

            表1以一個(gè)70 dB SNR的數(shù)據(jù)轉(zhuǎn)換器為例,說明隨著采樣速率從100 MHz提高到2 GHz,NSD有何改善。

            表1 改變一個(gè)70 dB SNR的ADC的采樣速率

            案例

            采樣速率

            奈奎斯特帶寬

            SNR

            NSD

            50 MHz頻段SNR

            50 MHz帶寬過采樣率

            A

            100 MSPS

            50 MHz

            70 dB

            –147 dBFs/Hz

            70 dB

            1

            B

            500 MSPS

            250 MHz

            70 dB

            –154 dBFs/Hz

            77 dB

            5

            C

            1 GSPS

            500 MHz

            70 dB

            –157 dBFs/Hz

            80 dB

            10

            D

            2 GSPS

            1 GHz

            70 dB

            –160 dBFs/Hz

            83 dB

            20

            表2顯示了部分極為不同的轉(zhuǎn)換器的多種SNR和采樣速率組合,但所有組合都具有相同的NSD,因此每一種組合在1 MHz通道內(nèi)都將具有相同的總噪聲。注意,轉(zhuǎn)換器的實(shí)際分辨率可能遠(yuǎn)高于有效位數(shù),因?yàn)楹芏噢D(zhuǎn)換器希望具有額外的分辨率以確保量化噪聲對NSD的影響可忽略不計(jì)。

            表2 幾種極為不同的轉(zhuǎn)換器均在1 MHz帶寬內(nèi)提供95 dB SNR;SNR計(jì)算假定為白噪底(無雜散影響)


            采樣速率

            奈奎斯特帶寬

            位數(shù)

            SNR

            NSD

            1 MHz頻段SNR

            情形1

            100 GSPS

            50 MHz

            8

            48 dB

            –155 dBFs/Hz

            95 dB

            情形2

            10 GSPS

            5 MHz

            10 to 12

            10至12

            58 dB

            –155 dBFs/Hz

            95 dB

            情形3

            1 GSPS

            500 MHz

            14

            68 dB

            –155 dBFs/Hz

            95 dB

            情形4

            100 MSPS

            50 MHz

            14

            78 dB

            –155 dBFs/Hz

            95 dB

            在一個(gè)傳統(tǒng)的單載波系統(tǒng)中,使用10 GSPS轉(zhuǎn)換器捕捉1 MHz信號似乎很滑稽,但在多載波軟件定義系統(tǒng)中,那可能是設(shè)計(jì)人員恰恰會做的事情。一個(gè)例子是有線機(jī)頂盒,其可能采用2.7 GSPS至3 GSPS全頻調(diào)諧器來捕捉包含數(shù)百電視頻道的有線信號,每個(gè)頻道的帶寬為數(shù)MHz。對于數(shù)據(jù)轉(zhuǎn)換器而言,噪聲頻譜密度的單位通常為dBFS/Hz,即相對于每Hz滿量程的dB。這是一種相對量度,提供了對噪聲電平的某種“折合到輸出端”測量。還有采用dBm/Hz甚至dB mV/Hz為單位來提供更為絕對的量度,即對數(shù)據(jù)轉(zhuǎn)換器噪聲的“折合到輸入端”測量。

            SNR、滿量程電壓、輸入阻抗和奈奎斯特帶寬也可用來計(jì)算ADC的有效噪聲系數(shù),但這涉及到相當(dāng)復(fù)雜的計(jì)算,參見ADI公司指南MT-006:“ADC噪聲系數(shù)——一個(gè)經(jīng)常被誤解的參數(shù)”。

            過采樣替代方法

            在較高的采樣速率下使用ADC通常意味著較高的功耗——無論是ADC自身抑或后續(xù)數(shù)字處理。表1顯示過采樣對NSD有好處,但問題依然存在:“過采樣真的值得嗎?”

            如表2所示,使用噪聲較低的轉(zhuǎn)換器也能實(shí)現(xiàn)更好的NSD。捕捉多載波的系統(tǒng)需要工作在較高采樣速率下,因此會對每個(gè)載波進(jìn)行過采樣。不過,過采樣仍有很多優(yōu)勢。

            簡化抗混疊濾波——過采樣會將較高頻率的信號(和噪聲)混疊到轉(zhuǎn)換器的奈奎斯特頻段內(nèi).所以為了混疊影響,這些信號需要在AD轉(zhuǎn)換前被濾波器濾除。這意味著過濾器的過渡帶必須位于最高目標(biāo)捕捉頻率(FIN)和該頻率的混疊(FSAMPLE、FIN)之間。隨著FIN越來越接近FSAMPLE/2,此抗混疊濾波器的過渡帶變得非常窄,需要極高階的濾波器。2至4倍過采樣可大幅減少模擬域中的這個(gè)限制,并將負(fù)擔(dān)置于相對容易處理的數(shù)字域中。

            即便使用完美的抗混疊濾波器,要最大程度減少轉(zhuǎn)換器失真產(chǎn)物折疊的影響也會帶來不足,在ADC中產(chǎn)生雜散和其他失真產(chǎn)物,包括某些極高階諧波。這些諧波還將在采樣頻率內(nèi)折疊,可能返回帶內(nèi),限制目標(biāo)頻段內(nèi)的SNR。在較高的采樣速率下,所需頻段成為奈奎斯特帶寬的一小部分,因而降低了折疊發(fā)生的概率。值得一提的是,過采樣還有助于可能發(fā)生帶內(nèi)折疊的其他系統(tǒng)雜散(比如器件時(shí)鐘源)的頻率規(guī)劃。

            調(diào)制增益對任何白噪聲都有影響,包括熱噪聲和量化噪聲,以及來自某些類型時(shí)鐘抖動(dòng)的噪聲。

            隨著速度更高的轉(zhuǎn)換器和數(shù)字處理產(chǎn)品的成熟,系統(tǒng)設(shè)計(jì)人員更頻繁地使用一定量的過采樣以發(fā)揮這些優(yōu)勢,比如噪底和FFT。

            image.png

            圖2 524,288樣本FFT和8192樣本FFT的ADC

            用戶可能很希望通過檢查頻譜曲線以及查看噪底深度來比較轉(zhuǎn)換器,如圖2所示。進(jìn)行此類比較時(shí),重要的是需記住頻譜曲線取決于快速傅里葉變換的大小。較大的FFT會將帶寬分成更多的頻率倉,每個(gè)頻率倉內(nèi)累積的噪聲會變少。這種情況下,頻譜曲線會顯示較低的噪底,但這只是一個(gè)繪圖偽像。事實(shí)上,噪聲頻譜密度并未發(fā)生改變(這是改變頻譜分析儀分辨率帶寬的信號處理等效情況)。

            最終,如果采樣速率等于FFT大小(或者成適當(dāng)比例),那么比較噪底是可以接受的,否則可能產(chǎn)生誤解。這里,NSD規(guī)格可用于直接比較。

            當(dāng)噪底不平坦時(shí)

            到目前為止,關(guān)于調(diào)制增益和過采樣的討論都假設(shè)噪聲在轉(zhuǎn)換器的奈奎斯特頻帶內(nèi)是平坦的。這在很多情況下是一個(gè)合理的近似,但也有某些情況不適用該假設(shè)。

            例如,之前已經(jīng)提到調(diào)制增益并不適用于雜散,雖然過采樣系統(tǒng)在頻率規(guī)劃和雜散處理方面可能有一些優(yōu)勢。此外,1/f噪聲和部分類型的振蕩器相位噪聲具有頻譜整形性能,調(diào)制增益計(jì)算不適用于此類情況。

            1609299668936069.png

            圖3 目標(biāo)頻段和噪聲整形

            噪聲不平坦的一個(gè)重要情形是使用Σ-Δ型轉(zhuǎn)換器時(shí)。

            Σ-Δ型調(diào)制器通過對反饋回路(量化器輸出)調(diào)制,進(jìn)而實(shí)現(xiàn)對量化噪聲整形,,從而降低目標(biāo)頻段內(nèi)的噪聲,但代價(jià)是增加帶外噪聲,如圖3所示。

            即使不進(jìn)行完整分析,也可以看到,對于Σ-Δ型調(diào)制器,使用NSD作為確定帶內(nèi)可用動(dòng)態(tài)范圍的規(guī)格尤為有效。圖4顯示的是高速帶通Σ-Δ型ADC放大后的噪底曲線。在75 MHz目標(biāo)頻段內(nèi)(中心頻率為225 MHz),噪聲為-160 dBFS/Hz左右,SNR超過74 dBFS。

            1609299696464376.png

            圖4 AD6676—噪底

            一個(gè)總結(jié)性范例

            為了總結(jié)并強(qiáng)化我們已經(jīng)討論過的內(nèi)容,現(xiàn)在看圖5所示曲線。本例考慮五款A(yù)DC:一款12位、2.5 GSPS ADC(紫色曲線);一款14位、1.25 GSPS ADC,時(shí)鐘速度分別為500 MSPS(紅色曲線);和1 GSPS(綠色曲線);一款14位、3 GSPS ADC,時(shí)鐘速度為3 GSPS(灰色曲線);一款不同的14位、500 MSPS ADC,時(shí)鐘速度為500 MSPS(藍(lán)色曲線);最后是圖4提到的帶通Σ-Δ型ADC。前五種情況的特征是具有近乎白色(平坦)的噪底,而Σ-Δ型ADC具有浴盆形噪聲頻譜密度,在目標(biāo)頻段內(nèi)的噪聲很低,如圖4所示。

            在每種情況中,采樣速率保持固定,通過改變數(shù)字濾波器(其移除數(shù)字化處理后的帶外噪聲)的截止頻率來掃描信號帶寬。由此可得出幾點(diǎn)結(jié)論。

            首先,降低信號帶寬會提高動(dòng)態(tài)范圍。然而,紫色、紅色和綠色直線的斜率始終為3 dB/倍頻程,因?yàn)槠銷SD曲線是平坦的。藍(lán)色曲線的斜率(Σ-Δ型ADC)則相當(dāng)陡峭。當(dāng)在通道的陡坡上掃描抽取濾波器的截止頻率時(shí),上述現(xiàn)象尤其明顯,因?yàn)樵擃l率的每次遞增/遞減都會導(dǎo)致濾除的噪聲功率量迅速變化。

            其次,各曲線具有不同的垂直偏移,這取決于轉(zhuǎn)換器的NSD。例如,紅色和綠色曲線對應(yīng)相同的ADC。但綠色曲線(1 GSPS)高于紅色曲線(500 MSPS),因?yàn)槠銷SD比其他情況低3 dB/Hz,其時(shí)鐘是紅色曲線的兩倍。

            圖5顯示了多種不同高速ADC的SNR與信號帶寬的權(quán)衡關(guān)系:五個(gè)斜率遵從平坦噪底的3 dB/倍頻程調(diào)制增益,而AD6676由于噪底整形而表現(xiàn)出更陡的調(diào)制增益。

            image.png

            圖5 不同ADC的SNR與信號帶寬的關(guān)系

            結(jié)語

            不斷豐富的高速和極高速ADC以及數(shù)字處理產(chǎn)品正使過采樣成為寬帶和射頻系統(tǒng)的實(shí)用架構(gòu)方法。半導(dǎo)體技術(shù)進(jìn)步為提升速度以及降低成本做出了諸多貢獻(xiàn)(比如價(jià)格、功耗和電路板面積),讓系統(tǒng)設(shè)計(jì)人員得以探索轉(zhuǎn)換和處理信號的各種方法——無論使用具有平坦噪聲頻譜密度的寬帶轉(zhuǎn)換器,或是使用在目標(biāo)頻段內(nèi)具有高動(dòng)態(tài)范圍的帶限Σ-Δ型轉(zhuǎn)換器。這些技術(shù)改變了我們對信號處理的認(rèn)識,以及我們定義產(chǎn)品規(guī)格的方式。思考如何捕捉信號時(shí),工程師可能會想到去比較在不同速度下工作的系統(tǒng)。進(jìn)行這類比較,或者查看軟件定義系統(tǒng)如何處理不同帶寬的信號時(shí),噪聲頻譜密度可以說比SNR更為有用。它不能取代其他規(guī)格,但會是規(guī)格列表上非常有用的一個(gè)目。

            作者簡介

            David H. Robertson自1985年從達(dá)特茅斯學(xué)院畢業(yè)后,便一直在ADI公司數(shù)據(jù)轉(zhuǎn)換器部門工作。他從事過采用互補(bǔ)雙極性、BiCMOS和CMOS工藝的各類高速DAC和ADC設(shè)計(jì)。他與美國、愛爾蘭、韓國、日本和中國的產(chǎn)品開發(fā)團(tuán)隊(duì)合作,歷任產(chǎn)品工程師、設(shè)計(jì)工程師、產(chǎn)品線總監(jiān)和模擬技術(shù)副總裁。David目前是ADI公司高速轉(zhuǎn)換器部門的產(chǎn)品與技術(shù)總監(jiān)。

            David擁有15項(xiàng)轉(zhuǎn)換器和混合信號電路方面的專利,參加過兩次“最佳小組”國際固態(tài)電路會議晚間小組談話,是榮獲《IEEE固態(tài)電路雜志》1997最佳論文獎(jiǎng)的論文的合著者。他從2000年至2008年擔(dān)任ISSCC技術(shù)計(jì)劃委員會委員,并在2002年至2008年期間擔(dān)任模擬與數(shù)據(jù)轉(zhuǎn)換器小組委員會主席。

            Gabriele Manganaro擁有意大利卡塔尼亞大學(xué)工程博士學(xué)位。1994年始,他在意法半導(dǎo)體和德克薩斯農(nóng)工大學(xué)做過研究工作。后在德州儀器做過數(shù)據(jù)轉(zhuǎn)換器IC設(shè)計(jì),并擔(dān)任過國家半導(dǎo)體(美國)設(shè)計(jì)總監(jiān)。自2010年起,他擔(dān)任ADI公司高速數(shù)據(jù)轉(zhuǎn)換器工程總監(jiān)。他曾連續(xù)7年擔(dān)任ISSCC數(shù)據(jù)轉(zhuǎn)換器技術(shù)小組委員會委員。他先后擔(dān)任過《IEEE電路與系統(tǒng)論文集》的副編輯、副主編和主編。他已撰寫或合作撰寫60篇論文及3本著作(其中最著名的是2011年劍橋大學(xué)出版社出版的《高級數(shù)據(jù)轉(zhuǎn)換器》),并擁有15項(xiàng)美國專利(及相應(yīng)的歐洲和日本專利)和其他申請中的專利。他還是多個(gè)科學(xué)獎(jiǎng)項(xiàng)的獲得者,包括英國盧瑟福阿普爾頓實(shí)驗(yàn)室的1995年CEU獎(jiǎng)、1999年IEEE電路與系統(tǒng)杰出青年作者獎(jiǎng)、2007年IEEE歐洲固態(tài)電路會議最佳論文獎(jiǎng)。他是IEEE院士(自2016年起)、IET院士(自2009年起)、Sigma Xi會員以及IEEE電路與系統(tǒng)協(xié)會理事會成員(2016 – 2018)。

            參考文獻(xiàn)

            MT-006:“ADC噪聲系數(shù)——一個(gè)經(jīng)常被誤解的參數(shù)”。ADI公司,2014年。



            關(guān)鍵詞:

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉