在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 醫(yī)療電子 > 設計應用 > 醫(yī)療圖像處理:從形成到解讀

            醫(yī)療圖像處理:從形成到解讀

            作者:Anton Patyuchenko ADI公司 時間:2019-07-25 來源:電子產(chǎn)品世界 收藏

            上個世紀在醫(yī)療成像領域?qū)崿F(xiàn)的技術(shù)進步為非侵入診斷創(chuàng)造了前所未有的機會,并確立醫(yī)療成像作為醫(yī)療健康系統(tǒng)的組成部分。代表這些進步的主要創(chuàng)新領域之一是醫(yī)療圖像處理的跨學科領域。

            本文引用地址:http://www.biyoush.com/article/201907/403074.htm

            這一快速發(fā)展的領域涉及從原始數(shù)據(jù)采集到數(shù)字圖像傳輸?shù)膹V泛流程,而這些流程是現(xiàn)代醫(yī)療成像系統(tǒng)中完整數(shù)據(jù)流的基礎。如今,這些系統(tǒng)在空間和強度維度方面提供越來越高的分辨率,以及更快的采集時間,從而產(chǎn)生大量優(yōu)質(zhì)的原始圖像數(shù)據(jù),必須正確處理和解讀這些數(shù)據(jù)才能獲得準確的診斷結(jié)果。

            本文重點介紹醫(yī)療圖像處理的關鍵領域,考慮特定成像模式的環(huán)境,并討論該領域的主要挑戰(zhàn)和趨勢。

            醫(yī)療圖像處理的核心領域

            有許多概念和方法用于構(gòu)建醫(yī)療圖像處理領域,這些概念和方法側(cè)重于其核心區(qū)域的不同方面,如圖1所示。這些方面形成此領域的三個主要過程——圖像形成、圖像計算和圖像管理。

            1564032111137791.jpg

            圖1.醫(yī)療圖像處理中主題類型的結(jié)構(gòu)分類。

            圖像形成過程由數(shù)據(jù)采集和圖像重構(gòu)步驟組成,用于解答數(shù)學反演問題。圖像計算的目的是提高重構(gòu)圖像的可解讀性并從中提取與臨床相關的信息。最后,圖像管理處理所獲取圖像和派生信息的壓縮、存檔、檢索和傳輸。

            圖像形成

            數(shù)據(jù)采集

            圖像形成的第一個必需步驟是采集原始成像數(shù)據(jù)。該數(shù)據(jù)包含有關描述身體各內(nèi)部器官的捕獲物理量的原始信息。這些信息成為所有后續(xù)圖像處理步驟的主要主題。

            不同類型的成像模式可以利用不同的物理原理,由此涉及不同物理量的探測。例如,在數(shù)字射線照相(DR)或計算機斷層掃描(CT)中,它是入射光子的能量;在正電子發(fā)射斷層掃描(PET)中,它是光子能量及其探測時間;在磁共振成像(MRI)中,它是由激發(fā)原子發(fā)射的射頻信號的參數(shù);而在超聲波中,它是回聲參數(shù)。

            但是,無論是哪種類型的成像模式,數(shù)據(jù)采集過程都可以細分為物理量的探測,還包括將物理量轉(zhuǎn)換為電信號、對采集的信號進行預調(diào)理,以及物理量的數(shù)字化。表示所有這些步驟均適用于大多數(shù)醫(yī)療成像模式的一個通用框圖如圖2所示。

            1564032130878285.jpg

            圖2.數(shù)據(jù)采集過程的通用框圖。

            圖像重構(gòu)

            圖像重構(gòu)是利用獲取的原始數(shù)據(jù)形成圖像的數(shù)學過程。對于多維成像,該過程還包括以不同角度或不同時間步驟捕獲的多個數(shù)據(jù)集的組合。這部分醫(yī)療圖像處理解決的是反演問題,這是該領域的基本主題。用于解決這類問題的算法主要有兩種——分析和迭代。

            分析法的典型示例包括廣泛用于斷層掃描的濾波反投影(FBP);在MRI中尤為重要的傅里葉變換(FT);以及延時疊加(DAS)波束成型,這是超聲檢查中一種不可或缺的技術(shù)。這些算法在所需的處理能力和計算時間方面精巧而高效。

            然而,它們基于理想化模型,因此有一些明顯的局限性,包括它們無法處理諸如測量噪聲的統(tǒng)計特性和成像系統(tǒng)物理等復雜因素。

            迭代算法則克服了這些局限性,極大地提高了對噪聲的不敏感性以及利用不完全原始數(shù)據(jù)重構(gòu)最優(yōu)圖像的能力。迭代法通常使用系統(tǒng)和統(tǒng)計噪聲模型,基于初始目標模型利用假設系數(shù)計算投影。計算出的投影與原始數(shù)據(jù)之間的差異定義用于更新對象模型的新系數(shù)。使用多個迭代步驟重復此過程,直到將映射估計值和真值的代價函數(shù)最小化,從而將重構(gòu)過程融入最終圖像。

            迭代法有很多種,包括最大似然期望最大化(MLEM)、最大后驗(MAP)、代數(shù)重建(ARC)技術(shù)以及許多其他目前廣泛應用于醫(yī)療成像模式的方法。

            圖像計算

            圖像計算涉及對重建成像數(shù)據(jù)運算的計算和數(shù)學方法,用于提取臨床相關信息。這些方法用于成像結(jié)果的增強、分析和可視化。

            增強

            圖像增強優(yōu)化圖像的變換表示,以提高所包含信息的可解讀性。其方法可細分為空間域和頻域技術(shù)。

            空間域技術(shù)直接作用于圖像像素,對于對比度優(yōu)化特別有用。這些技術(shù)通常依賴于對數(shù)、直方圖和冪律變換。頻域方法采用頻率變換,最適合于通過應用不同類型的濾波器對圖像進行平滑和銳化。

            利用所有這些技術(shù)可以減少噪聲和不均勻性,優(yōu)化對比度,增強邊緣,消除偽像,以及改善對后續(xù)圖像分析及其精確解讀至關重要的其他相關特性。

            分析

            圖像分析是圖像計算中的核心過程,它使用的各種方法可分為三大類:圖像分割、圖像配準和圖像量化。

            圖像分割過程將圖像分割為不同解剖結(jié)構(gòu)的有意義輪廓。圖像配準可確保多個圖像正確對齊,這對于分析時間變化或組合使用不同模式獲取的圖像特別重要。量化的過程決定了所識別結(jié)構(gòu)的性質(zhì),如體積、直徑、成分和其他相關的解剖或生理信息。所有這些過程都直接影響到成像數(shù)據(jù)的檢查質(zhì)量和醫(yī)學結(jié)果的準確性。

            可視化

            可視化過程將圖像數(shù)據(jù)呈現(xiàn)為在定義的維度上以特定形式直觀地表示解剖和生理成像信息。通過與數(shù)據(jù)直接交互,可以在成像分析的初始階段和中間階段進行可視化(例如,協(xié)助分割和配準過程),并在最后階段顯示優(yōu)化的結(jié)果。

            圖像管理

            醫(yī)療圖像處理的最后一部分涉及對所獲取信息的管理,包括用于圖像數(shù)據(jù)存儲、檢索和傳輸?shù)母鞣N技術(shù)。制定了若干標準和技術(shù),用于處理圖像管理的各個方面。例如,醫(yī)療成像技術(shù)圖像存檔與傳輸系統(tǒng)(PACS)提供對來自多種模式的圖像的經(jīng)濟存儲和訪問,而醫(yī)學數(shù)字成像和通信(DICOM)標準用于存儲和傳輸醫(yī)療圖像。圖像壓縮和流傳輸?shù)奶厥饧夹g(shù)高效地實現(xiàn)了這些任務。挑戰(zhàn)和趨勢

            醫(yī)療成像是一個相對保守的領域,從研究過渡到臨床應用通??赡苄枰嗄甑臅r間。然而,它的性質(zhì)復雜,在其構(gòu)成科學學科的各個方面都面臨著多方面的挑戰(zhàn),這穩(wěn)步推動了新方法的不斷發(fā)展。這些發(fā)展代表了在當今醫(yī)療圖像處理核心領域可以確定的主要趨勢。

            圖像采集領域受益于為提高原始數(shù)據(jù)質(zhì)量和豐富其信息內(nèi)容而開發(fā)的創(chuàng)新硬件技術(shù)。集成的前端解決方案可實現(xiàn)更快的掃描時間、更精細的分辨率和先進的架構(gòu),如超聲波/乳房X線照相術(shù)、CT/PET或PET/MRI組合系統(tǒng)。

            快速高效的迭代算法取代了分析法,越來越多地用于圖像重構(gòu)。它們能顯著改善PET的圖像質(zhì)量,減少CT中的X射線劑量,并在MRI中進行壓縮檢測。數(shù)據(jù)驅(qū)動的信號模型正在取代人工定義的模型,基于有限或噪聲數(shù)據(jù)為反演問題提供更好的解決方案。代表圖像重構(gòu)趨勢和挑戰(zhàn)的主要研究領域包括系統(tǒng)物理建模和信號模型的開發(fā)、優(yōu)化算法以及圖像質(zhì)量評估方法。

            隨著成像硬件捕獲越來越多的數(shù)據(jù),算法變得越來越復雜,人們迫切需要更高效的計算技術(shù)。這個巨大的挑戰(zhàn)可通過更強大的圖形處理器和多處理技術(shù)解決,為從研究過渡到應用提供全新的機會。

            與圖像計算和圖像管理這一轉(zhuǎn)變相關的主要趨勢和挑戰(zhàn)涵蓋許多主題,其中一些主題如圖3所示。

            1564032154356596.jpg

            圖3.當今醫(yī)療圖像計算中的主要趨勢主題示例。

            與所有這些主題相關的新技術(shù)不斷發(fā)展,縮小了研究與臨床應用之間的差距,促進了醫(yī)療圖像處理領域與醫(yī)師工作流程的整合,確保實現(xiàn)更準確、更可靠的成像結(jié)果。

            公司提供多種解決方案,用以滿足對數(shù)據(jù)采集電子設計提出的最苛刻的醫(yī)療成像要求,包括動態(tài)范圍、分辨率、準確性、線性度和噪聲。下面是為確保原始成像數(shù)據(jù)最高初始質(zhì)量而開發(fā)的此類解決方案的幾個例子。

            專為DR應用設計了帶256通道的高度集成的模擬前端ADAS1256。具有出色線性度的多通道數(shù)據(jù)采集系統(tǒng)ADAS1135和ADAS1134可最大限度地提高CT應用的圖像質(zhì)量。多通道ADC AD9228、AD9637、AD9219和AD9212經(jīng)過優(yōu)化后具有出色的動態(tài)性能和低功耗,可滿足PET要求。流水線ADC AD9656為MRI提供出色的動態(tài)性能和低功耗特性。集成式接收器前端AD9671專為要求小尺寸封裝的低成本、低功耗的醫(yī)療超聲應用而設計。

            結(jié)論

            醫(yī)療圖像處理是一個非常復雜的跨學科領域,涵蓋從數(shù)學、計算機科學到物理學和醫(yī)學的眾多科學學科。本文試圖提出一個簡化但結(jié)構(gòu)良好的核心領域框架,此框架代表該領域及其主要主題、趨勢和挑戰(zhàn)。其中,數(shù)據(jù)采集過程是第一個也是最重要的領域之一,它定義醫(yī)療圖像處理框架所有后續(xù)階段中使用的原始數(shù)據(jù)的初始質(zhì)量水平。

            作者簡介

            Anton Patyuchenko于2007年獲得慕尼黑技術(shù)大學微波工程碩士學位。畢業(yè)之后,Anton曾在德國航空航天中心(DLR)擔任科學家。他于2015年加入公司擔任現(xiàn)場應用工程師,目前為公司戰(zhàn)略與重點客戶提供現(xiàn)場應用支持,主要負責醫(yī)療健康、能源和微波應用。聯(lián)系方式:[email protected]。



            關鍵詞: ADI 醫(yī)療電子

            評論


            相關推薦

            技術(shù)專區(qū)

            關閉