在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > CPU、GPU 和 TPU有什么區(qū)別?TPU為什能碾壓GPU?

            CPU、GPU 和 TPU有什么區(qū)別?TPU為什能碾壓GPU?

            作者: 時間:2018-09-10 來源:網(wǎng)絡(luò) 收藏

              很多讀者可能分不清楚 之間的區(qū)別,因此 Google Cloud 將在這篇博客中簡要介紹它們之間的區(qū)別,并討論為什么 能加速深度學(xué)習(xí)。

            本文引用地址:http://www.biyoush.com/article/201809/391689.htm



              張量處理單元()是一種定制化的 ASIC 芯片,它由谷歌從頭設(shè)計,并專門用于機(jī)器學(xué)習(xí)工作負(fù)載。TPU 為谷歌的主要產(chǎn)品提供了計算支持,包括翻譯、照片、搜索助理和 Gmail 等。Cloud TPU 將 TPU 作為可擴(kuò)展的云計算資源,并為所有在 Google Cloud 上運(yùn)行尖端 ML 模型的開發(fā)者與數(shù)據(jù)科學(xué)家提供計算資源。在 Google Next’18 中,我們宣布 TPU v2 現(xiàn)在已經(jīng)得到用戶的廣泛使用,包括那些免費(fèi)試用用戶,而 TPU v3 目前已經(jīng)發(fā)布了內(nèi)部測試版。



              第三代 Cloud TPU



              如上為 tpudemo.com 截圖,該網(wǎng)站 PPT 解釋了 TPU 的特性與定義。在本文中,我們將關(guān)注 TPU 某些特定的屬性。

              神經(jīng)網(wǎng)絡(luò)如何運(yùn)算

              在我們對比 、 和 TPU 之前,我們可以先了解到底機(jī)器學(xué)習(xí)或神經(jīng)網(wǎng)絡(luò)需要什么樣的計算。如下所示,假設(shè)我們使用單層神經(jīng)網(wǎng)絡(luò)識別手寫數(shù)字。



              如果圖像為 28×28 像素的灰度圖,那么它可以轉(zhuǎn)化為包含 784 個元素的向量。神經(jīng)元會接收所有 784 個值,并將它們與參數(shù)值(上圖紅線)相乘,因此才能識別為「8」。其中參數(shù)值的作用類似于用「濾波器」從數(shù)據(jù)中抽取特征,因而能計算輸入圖像與「8」之間的相似性:



              這是對神經(jīng)網(wǎng)絡(luò)做數(shù)據(jù)分類最基礎(chǔ)的解釋,即將數(shù)據(jù)與對應(yīng)的參數(shù)相乘(上圖兩種顏色的點(diǎn)),并將它們加在一起(上圖右側(cè)收集計算結(jié)果)。如果我們能得到最高的預(yù)測值,那么我們會發(fā)現(xiàn)輸入數(shù)據(jù)與對應(yīng)參數(shù)非常匹配,這也就最可能是正確的答案。

              簡單而言,神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)和參數(shù)之間需要執(zhí)行大量的乘法和加法。我們通常會將這些乘法與加法組合為矩陣運(yùn)算,這在我們大學(xué)的線性代數(shù)中會提到。所以關(guān)鍵點(diǎn)是我們該如何快速執(zhí)行大型矩陣運(yùn)算,同時還需要更小的能耗。

               如何運(yùn)行

              因此 CPU 如何來執(zhí)行這樣的大型矩陣運(yùn)算任務(wù)呢?一般 CPU 是基于馮諾依曼架構(gòu)的通用處理器,這意味著 CPU 與軟件和內(nèi)存的運(yùn)行方式如下:



              CPU 如何運(yùn)行:該動圖僅展示了概念性原理,并不反映 CPU 的實(shí)際運(yùn)算行為。

              CPU 最大的優(yōu)勢是靈活性。通過馮諾依曼架構(gòu),我們可以為數(shù)百萬的不同應(yīng)用加載任何軟件。我們可以使用 CPU 處理文字、控制火箭引擎、執(zhí)行銀行交易或者使用神經(jīng)網(wǎng)絡(luò)分類圖像。

              但是,由于 CPU 非常靈活,硬件無法一直了解下一個計算是什么,直到它讀取了軟件的下一個指令。CPU 必須在內(nèi)部將每次計算的結(jié)果保存到內(nèi)存中(也被稱為寄存器或 L1 緩存)。內(nèi)存訪問成為 CPU 架構(gòu)的不足,被稱為馮諾依曼瓶頸。雖然神經(jīng)網(wǎng)絡(luò)的大規(guī)模運(yùn)算中的每一步都是完全可預(yù)測的,每一個 CPU 的算術(shù)邏輯單元(ALU,控制乘法器和加法器的組件)都只能一個接一個地執(zhí)行它們,每一次都需要訪問內(nèi)存,限制了總體吞吐量,并需要大量的能耗。

               如何工作

              為了獲得比 CPU 更高的吞吐量,GPU 使用一種簡單的策略:在單個處理器中使用成千上萬個 ALU?,F(xiàn)代 GPU 通常在單個處理器中擁有 2500-5000 個 ALU,意味著你可以同時執(zhí)行數(shù)千次乘法和加法運(yùn)算。



              GPU 如何工作:這個動畫僅用于概念展示。并不反映真實(shí)處理器的實(shí)際工作方式。

              這種 GPU 架構(gòu)在有大量并行化的應(yīng)用中工作得很好,例如在神經(jīng)網(wǎng)絡(luò)中的矩陣乘法。實(shí)際上,相比 CPU,GPU 在深度學(xué)習(xí)的典型訓(xùn)練工作負(fù)載中能實(shí)現(xiàn)高幾個數(shù)量級的吞吐量。這正是為什么 GPU 是深度學(xué)習(xí)中最受歡迎的處理器架構(gòu)。

              但是,GPU 仍然是一種通用的處理器,必須支持幾百萬種不同的應(yīng)用和軟件。這又把我們帶回到了基礎(chǔ)的問題,馮諾依曼瓶頸。在每次幾千個 ALU 的計算中,GPU 都需要訪問寄存器或共享內(nèi)存來讀取和保存中間計算結(jié)果。因?yàn)?GPU 在其 ALU 上執(zhí)行更多的并行計算,它也會成比例地耗費(fèi)更多的能量來訪問內(nèi)存,同時也因?yàn)閺?fù)雜的線路而增加 GPU 的物理空間占用。

              TPU 如何工作

              當(dāng)谷歌設(shè)計 TPU 的時候,我們構(gòu)建了一種領(lǐng)域特定的架構(gòu)。這意味著,我們沒有設(shè)計一種通用的處理器,而是專用于神經(jīng)網(wǎng)絡(luò)工作負(fù)載的矩陣處理器。TPU 不能運(yùn)行文本處理軟件、控制火箭引擎或執(zhí)行銀行業(yè)務(wù),但它們可以為神經(jīng)網(wǎng)絡(luò)處理大量的乘法和加法運(yùn)算,同時 TPU 的速度非常快、能耗非常小且物理空間占用也更小。

              其主要助因是對馮諾依曼瓶頸的大幅度簡化。因?yàn)樵撎幚砥鞯闹饕蝿?wù)是矩陣處理,TPU 的硬件設(shè)計者知道該運(yùn)算過程的每個步驟。因此他們放置了成千上萬的乘法器和加法器并將它們直接連接起來,以構(gòu)建那些運(yùn)算符的物理矩陣。這被稱作脈動陣列(Systolic Array)架構(gòu)。在 Cloud TPU v2 的例子中,有兩個 128X128 的脈動陣列,在單個處理器中集成了 32768 個 ALU 的 16 位浮點(diǎn)值。

              我們來看看一個脈動陣列如何執(zhí)行神經(jīng)網(wǎng)絡(luò)計算。首先,TPU 從內(nèi)存加載參數(shù)到乘法器和加法器的矩陣中。



              然后,TPU 從內(nèi)存加載數(shù)據(jù)。當(dāng)每個乘法被執(zhí)行后,其結(jié)果將被傳遞到下一個乘法器,同時執(zhí)行加法。因此結(jié)果將是所有數(shù)據(jù)和參數(shù)乘積的和。在大量計算和數(shù)據(jù)傳遞的整個過程中,不需要執(zhí)行任何的內(nèi)存訪問。



              這就是為什么 TPU 可以在神經(jīng)網(wǎng)絡(luò)運(yùn)算上達(dá)到高計算吞吐量,同時能耗和物理空間都很小。

              好處:成本降低至 1/5

              因此使用 TPU 架構(gòu)的好處就是:降低成本。以下是截至 2018 年 8 月(寫這篇文章的時候)Cloud TPU v2 的使用價格。



              Cloud TPU v2 的價格,截至 2018 年 8 月。

              斯坦福大學(xué)發(fā)布了深度學(xué)習(xí)和推理的基準(zhǔn)套裝 DAWNBench。你可以在上面找到不同的任務(wù)、模型、計算平臺以及各自的基準(zhǔn)結(jié)果的組合。

              在 DAWNBench 比賽于 2018 年 4 月結(jié)束的時候,非 TPU 處理器的最低訓(xùn)練成本是 72.40 美元(使用現(xiàn)場實(shí)例訓(xùn)練 ResNet-50 達(dá)到 93% 準(zhǔn)確率)。而使用 Cloud TPU v2 搶占式計價,你可以在 12.87 美元的價格完成相同的訓(xùn)練結(jié)果。這僅相當(dāng)于非 TPU 的不到 1/5 的成本。這正是神經(jīng)網(wǎng)絡(luò)領(lǐng)域特定架構(gòu)的威力之所在。



            關(guān)鍵詞: CPU GPU TPU

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉