省毫瓦以增里程:提升汽車CAN總線能效以增強(qiáng)燃油經(jīng)濟(jì)性
對于傳統(tǒng)乘用車而言,油箱是唯一的實(shí)際能源來源,故制造商們尋求在包括電子系統(tǒng)在內(nèi)的所有汽車系統(tǒng)中節(jié)能,以進(jìn)一步改善燃油經(jīng)濟(jì)性及二氧化碳(CO2)排放。隨著汽車中增添的電子系統(tǒng)的數(shù)量不斷增多,以增強(qiáng)汽車性能及安全性,并為購買者提供有吸引力的新功能,汽車中每個(gè)電子控制單元(ECU)的節(jié)能效果較低的話,就會(huì)使總油耗大幅增加。
本文引用地址:http://www.biyoush.com/article/201809/388565.htm芯片設(shè)計(jì)人員采用不同技術(shù)及途徑,已經(jīng)能夠降低他們提供的器件的總能耗。在單個(gè)系統(tǒng)基礎(chǔ)芯片(SBC)中結(jié)合多個(gè)器件的功能,并應(yīng)用不同電源管理策略,還能幫助進(jìn)一步降低總能耗。這些進(jìn)展表示當(dāng)今的內(nèi)燃發(fā)動(dòng)機(jī)汽車能夠舒適安全地搭載乘客,而使用的燃油更少,碳排放更低。
增強(qiáng)型系統(tǒng)基礎(chǔ)芯片
SBC為連接至汽車(CAN或LIN)總線的各種模塊(如車門模塊)提供電能、驅(qū)動(dòng)器及連接功能。通常情況下,它們可能集成穩(wěn)壓器, 為控制器及傳感器、高邊和/或低邊驅(qū)動(dòng)器、收發(fā)器接口及喚醒或看門狗引腳等其它系統(tǒng)連接功能供電。在單片器件中集成這些功能且結(jié)合內(nèi)置電源管理,跟使用分立元件相比,在功率、成本及尺寸方面具備優(yōu)勢。當(dāng)今的SBC使用現(xiàn)有技術(shù)及電源管理,能提供約20 μA的休眠電流及約60 μA的待機(jī)電流。
在一款典型SPC中,片上穩(wěn)壓器通常是低壓降(LDO)線性穩(wěn)壓器,如圖1所示?;谶@個(gè)原因,設(shè)計(jì)人員面臨的主要挑戰(zhàn)就在于散熱管理,因?yàn)長DO功率耗散相對較高。對于5 V時(shí)150 mA的穩(wěn)流供電電流而言,SBC應(yīng)當(dāng)能夠耗散高達(dá)1.3 W的總功率。如果SBC的LDO包含內(nèi)置旁路元件,此功率就在SBC封裝內(nèi)部耗散。用于需要更大電流(通常高于250 mA)的模塊的SBC,通常設(shè)計(jì)為與外部旁路元件一起使用。這就有效分散SBC與外部MOSFET之間的功率耗散,從而能夠擴(kuò)展實(shí)用的環(huán)境溫度范圍。
圖1. 包含LDO穩(wěn)壓器的傳統(tǒng)SBC
提升電源電路的能效,如在某些或全部LDO處使用開關(guān)模式的DC-DC轉(zhuǎn)換器,能夠大幅降低汽車中每個(gè)CAN節(jié)點(diǎn)SBC的功率損耗額。這能幫助簡化散熱管理,還能提升燃油經(jīng)濟(jì)性。
在仔細(xì)選擇轉(zhuǎn)換器架構(gòu)的情況下,采用開關(guān)模式DC-DC轉(zhuǎn)換的SBC能為使用自動(dòng)停止-啟動(dòng)(或微混合)技術(shù)的較新型車提供重要優(yōu)勢。自動(dòng)停止-啟動(dòng)技術(shù)在汽車停下來 (如等候交通信號(hào)燈) 時(shí)關(guān)閉發(fā)動(dòng)機(jī),能夠降低市區(qū)行駛的燃油消耗約15%至20%;當(dāng)駕駛員踩下加速踏板(油門)時(shí),發(fā)動(dòng)機(jī)自動(dòng)重啟,使系統(tǒng)有效地工作,而且這個(gè)過程對駕駛?cè)藛T而言是透明的。為了確保CAN總線上的所有系統(tǒng)都能夠持續(xù)恰當(dāng)?shù)匕l(fā)揮功用,應(yīng)用必須保持全面工作,即使是在發(fā)動(dòng)機(jī)啟動(dòng)期間電池電壓降至2.5 V那么低時(shí),也是如此。在這種情況下,升壓-降壓DC-DC拓?fù)浣Y(jié)構(gòu)使SBC能夠在所有工作條件下提供所要求的穩(wěn)壓輸出電壓。
圖2:采用DC-DC轉(zhuǎn)換器的SBC
局部網(wǎng)絡(luò)
當(dāng)今的汽車可能包含大量ECU,高端車型中的ECU數(shù)量可能多達(dá)100個(gè)左右。大多數(shù)ECU(如果不是全部的話)連接至CAN總線,因此,CAN總線始終是啟用的。即使發(fā)動(dòng)機(jī)熄火時(shí),某些ECU必須保持工作,以維持遙控開鎖(RKE)等功能的運(yùn)作。這么多數(shù)量的ECU連接至總線,對總體電能消耗有重要影響。
局部網(wǎng)絡(luò)(Partial Networking, PN)是一種用于降低能耗同時(shí)使ECU能夠?qū)拘阎噶钭鞒鲰憫?yīng)的技術(shù)。系統(tǒng)僅在某些特定時(shí)刻根據(jù)需要啟用部分網(wǎng)絡(luò),而其它節(jié)點(diǎn)保持在低功率狀態(tài)。有幾種可能的局部網(wǎng)絡(luò)應(yīng)用方案。針對公路用車頒布的CAN標(biāo)準(zhǔn)ISO 11898-6定義了選擇性喚醒功能,作為以高速媒體存取提供局部網(wǎng)絡(luò)的方式。當(dāng)某個(gè)ECU不要求工作時(shí),它可能斷開與CAN網(wǎng)絡(luò)的連接,只要沒有特定指令傳送給這個(gè)特別節(jié)點(diǎn)。
為了配合局部網(wǎng)絡(luò)功能,各個(gè)節(jié)點(diǎn)要求專用收發(fā)器中內(nèi)置“選擇性喚醒功能”。這種選擇性喚醒功能使不工作的ECU的電流消耗能降低至汽車制造商通常規(guī)定的100 µA平均待機(jī)電流極限范圍內(nèi)。即使有這樣的省電效果,但連接至總線ECU數(shù)量眾多,以致于對總線的總能耗進(jìn)而對汽車的燃油消耗有較大影響。這種途徑的另一項(xiàng)缺點(diǎn)就是跟每顆IC中必須包含的額外選擇性喚醒電路相關(guān)的系統(tǒng)成本增加了。此外,網(wǎng)絡(luò)內(nèi)所有節(jié)點(diǎn)都需要軟件適配,以配合應(yīng)用局部網(wǎng)絡(luò)。這就增加了較大的系統(tǒng)開發(fā)負(fù)荷。
引入 CAN中繼器
通過將邏輯總線分割為兩個(gè)物理部分,使其中某個(gè)完整部分在不用時(shí)斷電,能夠獲得可貴的省電效果,如圖2所示。這可以通過在連接至CAN總線的某個(gè)模塊上引入雙向中繼器來實(shí)現(xiàn)。
圖 3. 增加一個(gè)具有CAN中繼器的模塊使總線能夠分割為兩個(gè)部分
常規(guī)模塊包含一個(gè)連接至總線的CAN收發(fā)器,此收發(fā)器將物理CAN信號(hào)轉(zhuǎn)換為由模塊的微控制器(MCU)處理的數(shù)字信號(hào)。通常情況下,連接至總線的所有模塊都是這種類型。增加一個(gè)帶內(nèi)置CAN中繼器的模塊會(huì)創(chuàng)建一個(gè)點(diǎn),總線在此點(diǎn)能從物理上分為兩個(gè)部分。
如圖4所示,CAN中繼器以與獨(dú)立式CAN收發(fā)器類似的方式連接微控制器。在此器件內(nèi)部,端口A上的每個(gè)信號(hào)傳輸至端口B,而端口B上的每個(gè)信號(hào)傳輸至端口A。CAN總線信號(hào)在微控制器中被解釋(interpreted)。CAN總線數(shù)據(jù)的重復(fù)在中繼器芯片內(nèi)部完成。當(dāng)接收到進(jìn)入休眠(Go-to-Sleep)指令時(shí),端口之間的連接被斷開,有效地?cái)嚅_端口B上網(wǎng)絡(luò)部分的連接。斷開連接部分上的所有節(jié)點(diǎn)都可以進(jìn)入極低能耗的休眠模式。
圖4. CAN中繼器模塊的內(nèi)部架構(gòu)。
這種方法簡單且性價(jià)比高,因?yàn)樗泄?jié)點(diǎn)中除了一個(gè)節(jié)點(diǎn)外都可以使用標(biāo)準(zhǔn)ISO11898-2或ISO11898-5收發(fā)器來應(yīng)用,而且無須軟件適配。僅要求使用一個(gè)中繼器。當(dāng)使用這種技術(shù)時(shí),重要的是計(jì)算顧及到線纜長度、傳輸速度及由中繼器導(dǎo)致的額外延遲等因素的總體時(shí)序。
采用這種方式來分割總線也增強(qiáng)了汽車的故障容限(如線纜對地或電池短路)能力。如果有要求,還可以通過插入額外的總線中繼器,來進(jìn)一步限制這些所謂的“硬”總線故障。還可以防止帶有像增加電磁輻射及散熱問題等后果的“軟”錯(cuò)誤影響整個(gè)網(wǎng)絡(luò)。
結(jié)論
當(dāng)今的汽車制造商越來越注重將汽車中每個(gè)系統(tǒng)的能效提升至最高,以滿足更嚴(yán)格的排放及燃油經(jīng)濟(jì)性目標(biāo)。為了符合汽車購買者乃至地球的需求,如今,前所未有地更加重要的是,充分利用新的IC進(jìn)展來更高效率地在從熄火到所有系統(tǒng)工作等各個(gè)使用模式管理電氣能耗。
評(píng)論