如何計(jì)算集成斬波放大器的ADC轉(zhuǎn)換器的失調(diào)誤差和輸入阻抗
模數(shù)轉(zhuǎn)換器(ADC)中集成的緩沖器和放大器通常是斬波型。因?yàn)榕c其他工藝(如雙極性工藝)相比,CMOS晶體管噪聲高,難以匹配。這種斬波技術(shù)可以用來最大程度地降低放大器的失調(diào)和閃爍噪聲(1/f)。在斬波轉(zhuǎn)換過程中,開關(guān)的電荷注入會引起電流尖峰,進(jìn)而使施加于ADC輸入端的電壓產(chǎn)生方向不定(流入和/或流出)的下降或尖峰。壓降與連接到ADC輸入段的傳感器的輸出阻抗成比例。
本文引用地址:http://www.biyoush.com/article/201808/385368.htm簡介
模數(shù)轉(zhuǎn)換器(ADC)中集成的緩沖器和放大器通常是斬波型。有關(guān)這種斬波實(shí)現(xiàn)的例子,可參見AD7124-8 和AD7779數(shù)據(jù)手冊。需要這種斬波技術(shù)來最大程度地降低放大器的失調(diào)和閃爍噪聲(1/f),因?yàn)榕c其他工藝(如雙極性工藝)相比,CMOS晶體管噪聲高,難以匹配。通過斬波,放大器的1/f和失調(diào)轉(zhuǎn)換到較高頻率,如圖1所示。
圖1.閃爍噪聲(1/f)與斬波
在斬波轉(zhuǎn)換過程中,開關(guān)的電荷注入會引起電流尖峰,進(jìn)而使施加于ADC輸入端的電壓產(chǎn)生方向不定(流入和/或流出)的下降或尖峰。壓降與連接到ADC輸入段的傳感器的輸出阻抗成比例。
平均電流值
一般而言,數(shù)據(jù)手冊不會提供電流峰值,因?yàn)樗y以測量,而且不會增加任何有意義的信息。該信息之所以無意義,是因?yàn)榫彌_器的斬波頻率高于ADC的輸入信號帶寬。因此,輸入引腳上添加的低通濾波器(用來消除高于奈奎斯特頻率的頻率或信號音,或用來降低耦合噪聲)會對峰值電流進(jìn)行平均,如圖2所示。
圖2.輸入電流與時(shí)間的關(guān)系
用電流表測量輸入電流,一端連接到VDD/2,另一端連接到ADC的模擬輸入引腳。
如果電流表連接到其中一個(gè)電壓軌,由于輸入電壓裕量的關(guān)系,測得的電流可能高于數(shù)據(jù)手冊中的規(guī)格值。
輸入電流與輸入阻抗的關(guān)系
輸入阻抗規(guī)格對精確計(jì)算直流誤差沒有幫助,因?yàn)榕cADC內(nèi)部輸入阻抗引起的負(fù)載效應(yīng)相比,輸入偏置電流是最主要的貢獻(xiàn)因素。
有兩個(gè)規(guī)格與輸入偏置電流相關(guān):絕對電流和差分電流。
絕對值(IABSOLUTE)是在任意模擬輸入引腳測得的輸入電流。差分輸入電流(IDIFFERENTIAL)是在模擬輸入引腳對之間測得的電流差。這僅適用于差分輸入ADC。
如何計(jì)算直流誤差
輸入電流產(chǎn)生一個(gè)失調(diào)電壓(VOFFSET),后者與連接到輸入引腳的阻抗直接相關(guān)。
如圖3所示,產(chǎn)生的失調(diào)電壓一般為:
圖3.漏電流引起的壓降
如果用運(yùn)算放大器等低阻抗源驅(qū)動模擬輸入引腳,誤差將不很明顯。ADC測得的誤差取決于施加的輸入信號類型,例如是真差分輸入信號還是偽差分/單端輸入信號。對于真差分輸入信號,假設(shè)輸入電阻(R)完全匹配,那么ADC測得的誤差將是由模擬輸入引腳對之間的差分輸入電流引起,如下式所示:
其中,VADC為ADC輸入電壓。
圖4. 差分輸入ADC
如果電阻不是完全匹配,則在差分輸入電流貢獻(xiàn)之外,電阻不匹配也會產(chǎn)生一個(gè)誤差。一般而言,假設(shè)電阻容差為1%,那么最差情況下的失調(diào)電壓定義如下:
對于偽差分/單端輸入信號,有兩種情況:
一個(gè)模擬輸入連接到低阻抗源(參見圖5)。誤差定義為:
圖5. 偽差分/單端ADC
兩個(gè)輸入均連接到高阻抗源(參見圖6)。誤差與使用真差分信號的情況相同。
圖6. 偽差分ADC
交流誤差
交流分量與輸入阻抗規(guī)格直接相關(guān)。輸入阻抗可以是阻性或容性。若輸入阻抗為容性,則給定頻率下的阻抗計(jì)算如下:
其中:
Zc為輸入阻抗。
CIN為數(shù)據(jù)手冊給出的輸入電容。
fIN為輸入頻率。舉個(gè)例子,假設(shè)有8 pF電容和1 kHz輸入帶寬,則最小輸入阻抗約為20 MΩ。
誤差最小化
為使低通濾波器中電阻不匹配引起的誤差最小,最好使用小電阻和大電容,因?yàn)殡娮璁a(chǎn)生的失調(diào)和約翰遜噪聲較低。
評論