在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 消費電子 > 設(shè)計應(yīng)用 > 深度學(xué)習(xí)基礎(chǔ)概念筆記

            深度學(xué)習(xí)基礎(chǔ)概念筆記

            作者: 時間:2018-07-25 來源:網(wǎng)絡(luò) 收藏

            本文引用地址:http://www.biyoush.com/article/201807/383751.htm

            我們都知道,函數(shù)某個位置可導(dǎo),那么就可以確定這個點的斜率。要找到局部最小值,可以根據(jù)這個點的斜率移動 w。如根據(jù)此時斜率的值我們可以確定 w 應(yīng)該向右移動一段距離。

            此時移動 w 的距離稱為步長。步長的選取很關(guān)鍵,如果步長過長,那么每次 w 偏移過大,永遠(yuǎn)都找不到真正的最小值。而如果步長選取過小,那么收斂會變得很慢,而且有可能在中間某段平滑處停下來,找到的也不是真正的最小值。而步長怎么選擇呢?其實比較坑爹,某些時候有經(jīng)驗值,大部分時候則只能自己調(diào)整去試驗。

            在學(xué)習(xí)的過程中,遇到的最常見的一個問題是走不動了。比如在下圖中。從 A 點走到 B 點,B 點由于斜率平滑,慢慢走到了 C 點,這時候可能 C 點斜率是平滑了,那么 w 將無法繼續(xù)往下走,永遠(yuǎn)停留在 C 點!這樣得到的神經(jīng)網(wǎng)絡(luò)的誤差 L 顯然不是最小的,權(quán)值 w 也不是最佳的。

            因此,在神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)過程中,常用的做法是模擬物理世界引入一個動量球。假設(shè)每次的移動看成 是一個動量球的移動。在移動過程中,動量球先從最高點往下走,雖然下載下來后斜率減少,但是由于動量球?qū)⒁苿酉聛淼闹亓菽苻D(zhuǎn)變的動能,它會繼續(xù)往下走,從而移動過平緩區(qū)。當(dāng)動量球到達(dá)某個局部最低點的時候,動量球會依靠自己的動能繼續(xù)滾動,設(shè)法尋找到下一個局部最低點。當(dāng)然,動量球不是萬能的,它也可能會遇到山坡上不去最終滑下來停留在某個局部最小值(并不是真正的最小值)。但是動量球的引入,大大增加了學(xué)習(xí)過程的魯棒性,擴(kuò)寬了局部最小值的尋找范圍。

            實際上,借助理解神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的過程,我們會更加理解為什么深度越高的網(wǎng)絡(luò)不一定就越好。對于深度越高的神經(jīng)網(wǎng)絡(luò),平滑區(qū)會越來越多,局部最小點也會越來越多。沒有合適的算法,很容易就陷入某個局部最小值里面去,而這個最小值可能還不如深度更淺的神經(jīng)網(wǎng)絡(luò)獲得的局部最小值小。也就是說,神經(jīng)網(wǎng)絡(luò)復(fù)雜之后,對架構(gòu)和算法的要求大大加高。

            卷積

            如果對卷積這個數(shù)學(xué)概念還沒有了解,可以先看知乎這里通俗的解釋。

            怎樣通俗易懂地解釋卷積?

            如果沒有做過圖像處理,還需要先看看卷積核,感受一下它的神奇。

            圖像卷積與濾波的一些知識點

            以圖片的卷積為例,深度學(xué)習(xí)中的卷積計算就是使用卷積核遍歷一張圖片的過程。

            根據(jù)對于邊緣的處理不同,卷積分為相同填充和有效填充兩種方法。相同填充中,超出邊界的部分使用補充 0 的方法,使得輸入和輸出的圖像尺寸相同。而在有效填充中,則不使用補充 0 的方法,因此輸出的尺寸會比輸入尺寸小一些。

            例 1:3*3 的卷積核在 5*5 的圖像上進(jìn)行有效填充的卷積過程

            例 2. 兩個 3*3*3 卷積核在 5*5 圖像上進(jìn)行相同填充卷積過程。動圖

            圖像有 r,g,b 三個通道。這里使用卷積核也分為 3 個通道分別進(jìn)行卷積運算

            池化

            池化是卷積神經(jīng)網(wǎng)絡(luò)中用到的一種運算。在卷積神經(jīng)網(wǎng)絡(luò)中,卷積層后面一般是池化層。先進(jìn)行卷積運算,再進(jìn)行池化運算。

            池化層在神經(jīng)網(wǎng)絡(luò)中起到的是降低參數(shù)和計算量,引入不變形的作用。

            池化常用的是兩種,一種是 Avy Pooling,一種是 Max Pooling。下圖是 Max Pooling 的示意圖,可以看到分別找的是 2*2 矩陣中的最大值,Avy Pooling 則是將矩陣所有值加起來,求平均值。


            上一頁 1 2 下一頁

            關(guān)鍵詞: 感知器

            評論


            技術(shù)專區(qū)

            關(guān)閉