在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 揭秘FPGA:為什么比 GPU 的延遲低這么多?

            揭秘FPGA:為什么比 GPU 的延遲低這么多?

            作者: 時間:2018-06-27 來源:網(wǎng)絡(luò) 收藏

              最近幾年,這個概念越來越多地出現(xiàn)。

            本文引用地址:http://www.biyoush.com/article/201806/382354.htm

              例如,比特幣挖礦,就有使用基于的礦機。還有,之前微軟表示,將在數(shù)據(jù)中心里,使用“代替”CPU,等等。

              其實,對于專業(yè)人士來說,F(xiàn)PGA并不陌生,它一直都被廣泛使用。但是,大部分人還不是太了解它,對它有很多疑問——FPGA到底是什么?為什么要使用它?相比 CPU、GPU、ASIC(專用芯片),F(xiàn)PGA有什么特點?……

              今天,帶著這一系列的問題,我們一起來——揭秘FPGA。

              為什么使用FPGA?

              眾所周知,通用處理器(CPU)的摩爾定律已入暮年,而機器學(xué)習(xí)和 Web 服務(wù)的規(guī)模卻在指數(shù)級增長。

              人們使用定制硬件來加速常見的計算任務(wù),然而日新月異的行業(yè)又要求這些定制的硬件可被重新編程來執(zhí)行新類型的計算任務(wù)。

              FPGA 正是一種硬件可重構(gòu)的體系結(jié)構(gòu)。它的英文全稱是Field Programmable Gate Array,中文名是現(xiàn)場可編程門陣列。

              FPGA常年來被用作專用芯片(ASIC)的小批量替代品,然而近年來在微軟、百度等公司的數(shù)據(jù)中心大規(guī)模部署,以同時提供強大的計算能力和足夠的靈活性。


              ▲不同體系結(jié)構(gòu)性能和靈活性的比較

              FPGA 為什么快?「都是同行襯托得好」。

              CPU、都屬于馮·諾依曼結(jié)構(gòu),指令譯碼執(zhí)行、共享內(nèi)存。FPGA 之所以比 CPU 甚至 能效高,本質(zhì)上是無指令、無需共享內(nèi)存的體系結(jié)構(gòu)帶來的福利。

              馮氏結(jié)構(gòu)中,由于執(zhí)行單元(如 CPU 核)可能執(zhí)行任意指令,就需要有指令存儲器、譯碼器、各種指令的運算器、分支跳轉(zhuǎn)處理邏輯。由于指令流的控制邏輯復(fù)雜,不可能有太多條獨立的指令流,因此 使用 SIMD(單指令流多數(shù)據(jù)流)來讓多個執(zhí)行單元以同樣的步調(diào)處理不同的數(shù)據(jù),CPU 也支持 SIMD 指令。

              而 FPGA 每個邏輯單元的功能在重編程(燒寫)時就已經(jīng)確定,不需要指令。

              馮氏結(jié)構(gòu)中使用內(nèi)存有兩種作用。一是保存狀態(tài),二是在執(zhí)行單元間通信。

              由于內(nèi)存是共享的,就需要做訪問仲裁;為了利用訪問局部性,每個執(zhí)行單元有一個私有的緩存,這就要維持執(zhí)行部件間緩存的一致性。

              對于保存狀態(tài)的需求,F(xiàn)PGA 中的寄存器和片上內(nèi)存(BRAM)是屬于各自的控制邏輯的,無需不必要的仲裁和緩存。

              對于通信的需求,F(xiàn)PGA 每個邏輯單元與周圍邏輯單元的連接在重編程(燒寫)時就已經(jīng)確定,并不需要通過共享內(nèi)存來通信。

              說了這么多三千英尺高度的話,F(xiàn)PGA 實際的表現(xiàn)如何呢?我們分別來看計算密集型任務(wù)和通信密集型任務(wù)。

              計算密集型任務(wù)的例子包括矩陣運算、圖像處理、機器學(xué)習(xí)、壓縮、非對稱加密、Bing 搜索的排序等。這類任務(wù)一般是 CPU 把任務(wù)卸載(offload)給 FPGA 去執(zhí)行。對這類任務(wù),目前我們正在用的 Altera(似乎應(yīng)該叫 Intel 了,我還是習(xí)慣叫 Altera……)Stratix V FPGA 的整數(shù)乘法運算性能與 20 核的 CPU 基本相當(dāng),浮點乘法運算性能與 8 核的 CPU 基本相當(dāng),而比 GPU 低一個數(shù)量級。我們即將用上的下一代 FPGA,Stratix 10,將配備更多的乘法器和硬件浮點運算部件,從而理論上可達(dá)到與現(xiàn)在的頂級 GPU 計算卡旗鼓相當(dāng)?shù)挠嬎隳芰Α?/p>


              ▲FPGA 的整數(shù)乘法運算能力(估計值,不使用 DSP,根據(jù)邏輯資源占用量估計)


              ▲FPGA 的浮點乘法運算能力(估計值,float16 用軟核,float 32 用硬核)

              在數(shù)據(jù)中心,F(xiàn)PGA 相比 GPU 的核心優(yōu)勢在于延遲。

              像 Bing 搜索排序這樣的任務(wù),要盡可能快地返回搜索結(jié)果,就需要盡可能降低每一步的延遲。

              如果使用 GPU 來加速,要想充分利用 GPU 的計算能力,batch size 就不能太小,延遲將高達(dá)毫秒量級。

              使用 FPGA 來加速的話,只需要微秒級的 PCIe 延遲(我們現(xiàn)在的 FPGA 是作為一塊 PCIe 加速卡)。

              未來 Intel 推出通過 QPI 連接的 Xeon + FPGA 之后,CPU 和 FPGA 之間的延遲更可以降到 100 納秒以下,跟訪問主存沒什么區(qū)別了。


            上一頁 1 2 3 4 5 6 下一頁

            關(guān)鍵詞: FPGA 云計算 GPU

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉