在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 智能計算 > 業(yè)界動態(tài) > 人工智能學會畫油畫,你能分辨出和人類大師作品的差異嗎?

            人工智能學會畫油畫,你能分辨出和人類大師作品的差異嗎?

            作者: 時間:2018-04-20 來源:科技行者 收藏

              考慮到將給整個人類社會帶來的深遠影響,目前關于以及機器學習的討論可謂如火如荼。但除此之外,利用神經網(wǎng)絡進行藝術創(chuàng)作也開始快速興起,目前人們正積極訓練算法以繪制人臉、煙花甚至是人體藝術作品。盡管看似愚蠢,但這種另類的嘗試確實能夠幫助我們更透徹地理解技術。

            本文引用地址:http://www.biyoush.com/article/201804/378715.htm

              現(xiàn)居慕尼黑的谷歌公司藝術家Mario Klingemann正在Twitter上持續(xù)發(fā)布一項有趣的神經網(wǎng)絡實驗。他以幾乎實時方式展示其利用各類數(shù)據(jù)訓練而成的神經網(wǎng)絡,而得出的結果往往令人捧腹不止——特別是在算法嘗試繪制人臉時。然而,這也正是此項實驗的重點所在:通過觀察神經網(wǎng)絡如何“傻傻”地進行學習,我們將能夠一窺藝術創(chuàng)作的基本思路。

             

              目前,Klingemann專注于使用1900年以前的油畫肖像。他利用英偉達的pix2pixHD算法配合1900年之前的畫作照片構建起一款寫實派人臉生成器,并利用數(shù)千幅歐洲藝術家作品對其進行訓練。而最終得出的人臉繪制結果則在真實與可笑之間往來游移。

              Klingemann在接受郵件采訪時表示,“縱觀整個藝術發(fā)展史,可以清楚地看到自文化啟蒙以來,人們就對藝術沉迷不已。我想其中的一大重要原因在于,面孔的繪制既簡單但又可以極為復雜——我們可以畫出一張簡單可辨的面孔,也可以努力重現(xiàn)每個毛孔的具體細節(jié)。最困難的冷媒是,每個人都是人臉識別方面的專家,我們會注意到表情中的細微變化,并輕松發(fā)現(xiàn)極為細微的比例失調問題。這意味著如果繪制或者說生成一張人臉之后,這種輕微變化所引發(fā)的影響將很快被人們所發(fā)現(xiàn)。”

              那么,我們該如何對人類畫作與神經網(wǎng)絡的作品進行區(qū)分?

              

             

              乍看之下,我們似乎難以判斷。但在仔細觀察之下,大家就會發(fā)現(xiàn)神經網(wǎng)絡的作品中存在著一些奇怪之處——包括黑色的左眼右手部分胡須狀的陰影。對于Klingemann來說,讓神經網(wǎng)絡繪制出真正的好作品絕對是一大挑戰(zhàn)——就目前而言,其表現(xiàn)還無法令人滿意。他指出,“我能夠輕松判斷出這套模型的能力水平,特別是在細節(jié)方面,因為任何錯誤都會引發(fā)一些不可思議的內容。”他同時承認,由于該模型的訓練素材主要為幾百年前的歐洲中年男性及年輕女性畫作,因此大部分人物面部都白得過分——他正在尋找更多圖像來源以豐富自己的訓練數(shù)據(jù)集。

              在Klingemann看來,訓練神經網(wǎng)絡的過程亦是一項藝術挑戰(zhàn),換言之同時要求人類與機器發(fā)揮自身創(chuàng)造性。他解釋稱,“構建面部生成器就像開發(fā)故事生成器一樣。每張面孔或者一組面孔都會引發(fā)相應的聯(lián)想、問題甚至是情緒。當然,機器在處理這類任務時往往會帶來令人意想不到的結果。”

              事實上,通過此輪實驗,他發(fā)現(xiàn)生成十九世紀油畫風格的肖像要比創(chuàng)造寫實派風格的肖像簡單得多。他指出,“當我們觀看畫作時,往往會對那些看起來不太準確的部分更為包容。這是因為我們會考慮這可能是藝術家們有意為之。”畢竟,有很多畫作都存在著解剖學原理層面的問題,這會進一步縮小人類作品與機器作品間的差異。

              以《荊冕耶穌像》為例,這是一幅誕生于1930年的拙劣耶穌畫像,并在2012年因其奇異的風格而在網(wǎng)絡上名震一時。Klingemann創(chuàng)作出了自己的繪畫算法版本,其擁有著與原作一樣令人毛骨悚然的風格——但同時又相當搞笑。



            關鍵詞: 人工智能

            評論


            相關推薦

            技術專區(qū)

            關閉