在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁(yè) > 智能計(jì)算 > 業(yè)界動(dòng)態(tài) > 這7 個(gè)深度學(xué)習(xí)實(shí)用技巧,你掌握了嗎?

            這7 個(gè)深度學(xué)習(xí)實(shí)用技巧,你掌握了嗎?

            作者: 時(shí)間:2018-02-23 來(lái)源:網(wǎng)絡(luò) 收藏

              前幾天,工程師George Seif發(fā)表了一篇博文,總結(jié)了7個(gè)的技巧,主要從提高模型的準(zhǔn)確性和速度兩個(gè)角度來(lái)分析這些小技巧。在使用深度學(xué)習(xí)的時(shí)候,我們不能僅僅把它看成一個(gè)黑盒子,因?yàn)榫W(wǎng)絡(luò)設(shè)計(jì)、訓(xùn)練過(guò)程、數(shù)據(jù)處理等很多步驟都需要精心的設(shè)計(jì)。作者分別介紹了7個(gè)非常實(shí)用小技巧:數(shù)據(jù)量、優(yōu)化器選擇、處理不平衡數(shù)據(jù)、遷移學(xué)習(xí)、數(shù)據(jù)增強(qiáng)、多個(gè)模型集成、加快剪枝。相信掌握了這7個(gè)技巧,能讓你在實(shí)際工作中事半功倍!

            本文引用地址:http://www.biyoush.com/article/201802/375972.htm

               

             

              7 Practical Deep Learni ng Tips

              7個(gè)實(shí)用的深度學(xué)習(xí)技巧

              深度學(xué)習(xí)已經(jīng)成為解決許多具有挑戰(zhàn)性問(wèn)題的方法。 在目標(biāo)檢測(cè),語(yǔ)音識(shí)別和語(yǔ)言翻譯方面,深度學(xué)習(xí)是迄今為止表現(xiàn)最好的方法。 許多人將深度神經(jīng)網(wǎng)絡(luò)(DNNs)視為神奇的黑盒子,我們輸入一些數(shù)據(jù),出來(lái)的就是我們的解決方案! 事實(shí)上,事情要復(fù)雜得多。

              在設(shè)計(jì)和應(yīng)用中,把DNN用到一個(gè)特定的問(wèn)題上可能會(huì)遇到很多挑戰(zhàn)。 為了達(dá)到實(shí)際應(yīng)用所需的性能標(biāo)準(zhǔn),數(shù)據(jù)處理、網(wǎng)絡(luò)設(shè)計(jì)、訓(xùn)練和推斷等各個(gè)階段的正確設(shè)計(jì)和執(zhí)行至關(guān)重要。 在這里,我將與大家分享7個(gè)實(shí)用技巧,讓你的深度神經(jīng)網(wǎng)絡(luò)發(fā)揮最大作用。

               

             

              ▌ 1-數(shù)據(jù),數(shù)據(jù),數(shù)據(jù)

              這不是什么大秘密,深度學(xué)習(xí)機(jī)需要大量的“燃料”, 那“燃料”就是數(shù)據(jù)。擁有的標(biāo)簽數(shù)據(jù)越多,模型的表現(xiàn)就越好。 更多數(shù)據(jù)產(chǎn)生能更好性能的想法,已經(jīng)由谷歌的大規(guī)模數(shù)據(jù)集(有3億圖像)證明!為了感受數(shù)據(jù)帶給深度學(xué)習(xí)模型的性能提升,在部署Deep Learning模型時(shí),你應(yīng)該不斷地為其提供更多的數(shù)據(jù)和微調(diào)以繼續(xù)提高其性能。 Feed the beast:如果你想提高你的模型的性能,就要提供更多的數(shù)據(jù)!

               

             

              圖顯示數(shù)據(jù)量的增加會(huì)得到更好的性能

              ▌ 2-你應(yīng)該選擇哪一個(gè)優(yōu)化器

              多年來(lái),已經(jīng)開(kāi)發(fā)了許多梯度下降優(yōu)化算法,他們各有其優(yōu)缺點(diǎn)。 一些最流行的方法如下:

              Stochastic Gradient Descent (SGD) with momentum

              Adam

              RMSprop

              Adadelta

              RMSprop,Adadelta和Adam被認(rèn)為是自適應(yīng)優(yōu)化算法,因?yàn)樗鼈儠?huì)自動(dòng)更新學(xué)習(xí)率。 使用SGD時(shí),您必須手動(dòng)選擇學(xué)習(xí)率和動(dòng)量參數(shù),通常會(huì)隨著時(shí)間的推移而降低學(xué)習(xí)率。

              在實(shí)踐中,自適應(yīng)優(yōu)化器傾向于比SGD更快地收斂, 然而,他們的最終表現(xiàn)通常稍差。 SGD通常會(huì)達(dá)到更好的minimum,從而獲得更好的最終準(zhǔn)確性。但這可能需要比某些優(yōu)化程序長(zhǎng)得多的時(shí)間。 它的性能也更依賴(lài)于強(qiáng)大的初始化和學(xué)習(xí)率衰減時(shí)間表,這在實(shí)踐中可能非常困難。

              因此,如果你需要一個(gè)優(yōu)化器來(lái)快速得到結(jié)果,或者測(cè)試一個(gè)新的技術(shù)。 我發(fā)現(xiàn)Adam

              很實(shí)用,因?yàn)樗鼘?duì)學(xué)習(xí)率并不是很敏感。 如果您想要獲得絕對(duì)最佳的表現(xiàn),請(qǐng)使用SGD + Momentum,并調(diào)整學(xué)習(xí)率,衰減和動(dòng)量值來(lái)使性能最優(yōu)化。


            上一頁(yè) 1 2 下一頁(yè)

            關(guān)鍵詞: 深度學(xué)習(xí)

            評(píng)論


            相關(guān)推薦

            技術(shù)專(zhuān)區(qū)

            關(guān)閉