無線溫度傳感器設(shè)計(jì)方案集錦
目前,大多采用的是有線多點(diǎn)溫度采集系統(tǒng),通過安裝溫度節(jié)點(diǎn)來實(shí)現(xiàn)對(duì)室內(nèi)外溫度監(jiān)控。這種傳統(tǒng)的多點(diǎn)采集系統(tǒng)需要用導(dǎo)線與每個(gè)溫度采集節(jié)點(diǎn)連接,其技術(shù)成熟,制作成本相對(duì)較低。但是,在許多場(chǎng)合需要將傳感器節(jié)點(diǎn)直接放置在目標(biāo)地點(diǎn)進(jìn)行現(xiàn)場(chǎng)的數(shù)據(jù)采集,這就要求傳感器節(jié)點(diǎn)具有無線通信的能力。同時(shí),由于無線傳感器通常使用電池作為能源,所以,它對(duì)能耗要求非常高。
本文引用地址:http://www.biyoush.com/article/201710/367046.htm針對(duì)這些問題,本文羅列出關(guān)于無線溫度傳感器設(shè)計(jì)的各種方案,以供讀者進(jìn)行設(shè)計(jì)參考。
數(shù)字化無線溫度傳感器
本設(shè)計(jì)主要是基于433 MHz ISM頻段,無需申請(qǐng)就可以使用。該設(shè)計(jì)方案有許多明顯的優(yōu)點(diǎn):傳輸速度快、距離遠(yuǎn)、數(shù)據(jù)穩(wěn)定;采用低功耗模式,延長電池使用時(shí)間;能保證任何時(shí)候數(shù)據(jù)不丟失,提高系統(tǒng)的強(qiáng)健度。
1系統(tǒng)硬件設(shè)計(jì)
所設(shè)計(jì)的無線溫度傳感器主要由以下幾部分組成:溫度測(cè)量、發(fā)射部分、接收部分、LCD顯示部分以及操控部分。系統(tǒng)結(jié)構(gòu)圖如圖1所示。
1.1 溫度測(cè)量電路
在溫度測(cè)量電路中采用Dallas公司生產(chǎn)的1-Wire總線數(shù)字溫度傳感器DS18B20。溫度測(cè)量電路如圖2所示。
DS18B20是3引腳TO-92小體積封裝形式;溫度測(cè)量范圍為-55~125℃,可編程為9-12位A/D轉(zhuǎn)換精度,測(cè)溫分辨率可達(dá)0.062 5℃,被測(cè)溫度以帶符號(hào)擴(kuò)展的16位數(shù)字方式串行輸出。
DS18B20內(nèi)部結(jié)構(gòu)主要由4部分組成:64位ROM、溫度傳感器、非揮發(fā)的溫度報(bào)警觸發(fā)器TH和 TL及配置寄存器。ROM中的64位序列號(hào)是出廠前被光刻好的,它可以看作是該DS18B20的地址序列碼,每個(gè)DS18B20的64位序列號(hào)均不相同。 ROM的作用是使每一個(gè)DS18B20都各不相同,這樣就可以實(shí)現(xiàn)一根總線上掛接多個(gè)DS181E0的目的。
DS18B20中的溫度傳感器完成對(duì)溫度的測(cè)量,用16位符號(hào)擴(kuò)展的二進(jìn)制補(bǔ)碼形式提供,以0.062 5℃/LSB形式表達(dá)。例如+25.062 5℃的數(shù)字輸出為0191H,-25.062 5℃的數(shù)字輸出為FF6FH。
高低溫報(bào)警觸發(fā)器TH和TL、配置寄存器均由一個(gè)字節(jié)的E2PROM組成,使用一個(gè)存儲(chǔ)器功能命令可對(duì)TH,TL或配置寄存器寫入。其中配置寄存器的格式如下:
R1和R0決定溫度轉(zhuǎn)換的精度位數(shù):R1R0=“00”,9位精度,最大轉(zhuǎn)換時(shí)間為93.75 ms;R1R0=“01”,10位精度,最大轉(zhuǎn)換時(shí)間為187.5 ms;R1R0=“10”,11位精度,最大轉(zhuǎn)換時(shí)間為375 ms;R1R0;“11”,12位精度,最大轉(zhuǎn)換時(shí)間為750 ms;未編程時(shí)默認(rèn)為12位精度。設(shè)計(jì)取R1R0=“11”。
1.2 無線收發(fā)電路
1.2.1 IA4421與單片機(jī)的接口
IA4421支持SPI通信協(xié)議,本設(shè)計(jì)選擇了美國ATMEL公司出品的高性能單片機(jī)ATmega324p,其內(nèi)置增強(qiáng)型SPI接口,并且有32 kB的FLASH,能夠滿足在系統(tǒng)中的LCD上顯示中文字符。IA4421與單片機(jī)的接口電路示意圖如圖3所示。
ATmega324p內(nèi)置的增強(qiáng)型串行外設(shè)接口SPI提供訪問一個(gè)全雙工同步串行總線的能力。SPI所使用的4個(gè)信號(hào)為MOSI,MISO,SCK 和SS。MOSI用于從主器件到從器件的串行數(shù)據(jù)傳輸;MISO用于從器件到主器件的串行數(shù)據(jù)傳輸;SCK用于同步主器件和從器件之間在MOSI和 MISO線上的串行數(shù)據(jù)傳輸。
1.2.2 無線發(fā)送時(shí)序
IA4421的發(fā)送方式為發(fā)送寄存器緩沖數(shù)據(jù)傳輸方式,由配置設(shè)置命令的第7位el來使能,圖1可以看出,IA4421共有2個(gè)8位的數(shù)據(jù)寄存器,發(fā)送的數(shù)據(jù)首先被鎖存到其中一個(gè)數(shù)據(jù)寄存器中,當(dāng)電源管理命令的第5位et被置1,則發(fā)送器開始以設(shè)置的碼率從第一個(gè)寄存器向外發(fā)送數(shù)據(jù)。
每次發(fā)送數(shù)據(jù)必須以0xAA作為發(fā)送數(shù)據(jù)的前導(dǎo)碼,否則外部接收裝置無法接收數(shù)據(jù)。若是采用同步模式,則要用0x2DD4作為同步模式的標(biāo)志碼,然后才能開始傳輸數(shù)據(jù)。引腳nIRQ可以用來檢測(cè)寄存器是否準(zhǔn)備好從微處理器接收下一個(gè)字節(jié)來發(fā)送,若是引腳nIRQ變?yōu)榈碗娖?,則表示寄存器準(zhǔn)備好了。
1.2.3 無線接收時(shí)序
IA4421的接收方式有兩種:一種是一直接收;另一種是FIFO模式。前一種方式并不推薦,會(huì)引起較高的誤碼率。本設(shè)計(jì)采用后一種模式。在相應(yīng)的控制字都設(shè)置好之后,數(shù)據(jù)已進(jìn)入緩沖器中,若引腳nIRQ變成低電平,則表示IA4421準(zhǔn)備好接收數(shù)據(jù),這時(shí)發(fā)送FIFO讀命令字,開始接收。
1.3 外圍天線設(shè)計(jì)
IA4421的支持天線直接驅(qū)動(dòng),設(shè)計(jì)相當(dāng)簡單方便并且通信距離長。一個(gè)50 Ω的外接螺旋天線和對(duì)應(yīng)的差分電路就可以實(shí)現(xiàn)數(shù)據(jù)的發(fā)送和接收。本系統(tǒng)設(shè)計(jì)的天線是用1.17 cm的單芯銅導(dǎo)線實(shí)現(xiàn),導(dǎo)線的直徑是0.6 mm,用螺絲刀的金屬棒饒制7圈成螺旋狀。經(jīng)過實(shí)驗(yàn),實(shí)際有效的通信距離能達(dá)到200 m左右,滿足了系統(tǒng)需要。
2 系統(tǒng)軟件設(shè)計(jì)
2.1 單片機(jī)軟件設(shè)計(jì)
單片機(jī)軟件部分主要包括主程序、中斷子程序、測(cè)溫子程序、LCD的轉(zhuǎn)換顯示,蜂鳴器報(bào)警子程序,按鍵子程序以及SPI子程序等。為了降低功耗,使用中斷來喚醒單片機(jī)進(jìn)行測(cè)溫等工作,因此主程序部分比較簡單,主要負(fù)責(zé)系統(tǒng)各部分初始化和中斷的調(diào)用,在系統(tǒng)初始化完成后就直接進(jìn)入睡眠模式,當(dāng)中斷到來時(shí)單片機(jī)退出睡眠模式,調(diào)用中斷子程序?qū)崿F(xiàn)測(cè)溫、轉(zhuǎn)換顯示、溫度數(shù)據(jù)的傳輸?shù)裙δ?。單片機(jī)控制程序流程圖如圖4所示。
2.2 IA4421應(yīng)用程序設(shè)計(jì)
本系統(tǒng)是基于無線收發(fā)芯片IA4421和單片機(jī)ATmega324p的增強(qiáng)型串行外設(shè)接口SPI來實(shí)現(xiàn)無線數(shù)據(jù)的傳輸,在核心協(xié)議棧上編寫自己的上層應(yīng)用程序。發(fā)送接收數(shù)據(jù)的程序流程圖如圖5所示。
2.3 低功耗設(shè)計(jì)
作為無線傳感器,低功耗運(yùn)行可以最大限度地延長設(shè)備的有效使用時(shí)間,本系統(tǒng)是采用電池供電,功耗肯定就是一個(gè)不得不考慮的問題。為了獲得最佳性能,設(shè)計(jì)時(shí)在電源損耗和可用性方面必須根據(jù)情況權(quán)衡使用,除了選用低功耗器件外,還從以下幾個(gè)方面設(shè)計(jì)電源管理程序以盡量減少無線溫度傳感器的功耗:
(1)由于無線溫度傳感器負(fù)責(zé)向控制終端傳輸數(shù)據(jù),因此何時(shí)進(jìn)行數(shù)據(jù)采集、何時(shí)進(jìn)行數(shù)據(jù)傳輸可以由上位機(jī)的控制終端決定,非常適合使用休眠模式和呼吸模式,通過減少IA4421在微微網(wǎng)中的活動(dòng)達(dá)到節(jié)電的目的。把控制終端作為主設(shè)備,將電源管理程序設(shè)計(jì)在終端的應(yīng)用控制層中,并由控制終端完成設(shè)備的查詢、配對(duì)、建鏈等工作,當(dāng)無線傳感器與控制終端配對(duì)成功并連接后進(jìn)入休眠模式,此時(shí)主從設(shè)備仍然保持著信道,只是不能發(fā)送和接收數(shù)據(jù)。當(dāng)需要進(jìn)行數(shù)據(jù)傳輸時(shí),退出休眠模式進(jìn)入呼吸模式,通過呼吸時(shí)隙發(fā)送數(shù)據(jù),呼吸間隔可設(shè)為20~40 ms,間隔過大會(huì)帶來明顯延遲,當(dāng)數(shù)據(jù)傳輸結(jié)束后再次進(jìn)入休眠模式,從而盡可能地降低能耗。
?。?)應(yīng)用單片機(jī)的睡眠模式達(dá)到節(jié)能目的。當(dāng)IA4421退出待機(jī)狀態(tài),發(fā)送指令進(jìn)行數(shù)據(jù)采集時(shí),IA4421的中斷請(qǐng)求標(biāo)志位nIRQ產(chǎn)生低電平,通過中斷標(biāo)志位上電平的變化產(chǎn)生外部中斷來喚醒單片機(jī)進(jìn)入工作狀態(tài)。
基于nRF905的無線溫度傳感器網(wǎng)絡(luò)硬件設(shè)計(jì)#e#
基于nRF905的無線溫度傳感器網(wǎng)絡(luò)硬件設(shè)計(jì)
圖1 溫度傳感器網(wǎng)絡(luò)結(jié)構(gòu)組成圖
控制模塊設(shè)計(jì)
控制模塊的功能包括:①測(cè)量并處理傳感器模塊數(shù)據(jù);②讀取并處理無線收發(fā)模塊接收的數(shù)據(jù),進(jìn)行數(shù)據(jù)融合,配置系統(tǒng)參數(shù);③通信協(xié)議處理,完成無線傳感器網(wǎng)絡(luò)通信中的MAC和路由協(xié)議處理。因此,綜合考慮控制模塊的處理速度、存儲(chǔ)空間、外圍接口、功能和功耗等因素,本設(shè)計(jì)選取µPD78F0485微控制器作為控制模塊的核心器件。
無線收發(fā)模塊設(shè)計(jì)
本設(shè)計(jì)在考慮調(diào)制方式、功耗、傳輸距離、功率等因素的基礎(chǔ)上,選取Nordic VLSI公司的無線射頻芯片nRF905。nRF905是一款低功耗無線收發(fā)芯片,可工作于433/868/915MHz ISM頻段,GFSK調(diào)制,本設(shè)計(jì)采用433MHz為中心頻率。該收發(fā)芯片由功率放大器、頻率合成器、晶體振蕩器、接收解調(diào)器和調(diào)制器組成,片內(nèi)自動(dòng)完成曼徹斯特編碼和解碼,廣泛應(yīng)用于無線數(shù)據(jù)通信、無線報(bào)警及安全系統(tǒng)、無線開鎖、無線監(jiān)測(cè)和家庭自動(dòng)化等領(lǐng)域。
nRF905通過SPI與微控制器進(jìn)行通信,可自動(dòng)處理字頭和CRC(循環(huán)冗余碼校驗(yàn))。發(fā)送數(shù)據(jù)時(shí),微控制器只需將配置寄存器信息、所要發(fā)送的數(shù)據(jù)和接收地址通過SPI傳送給nRF905,它會(huì)自動(dòng)完成數(shù)據(jù)的打包和發(fā)送。接收數(shù)據(jù)時(shí),nRF905自動(dòng)檢測(cè)載波并進(jìn)行地址匹配,接收到正確數(shù)據(jù)后自動(dòng)移去字頭、地址和CRC校驗(yàn)碼,再通過SPI將數(shù)據(jù)傳送到微控制器。nRF905具有四種工作模式:掉電模式、待機(jī)模式、Shock Burst接收模式和Shock Burst發(fā)送模式。在掉電模式中,電流僅為2.5µA,易于實(shí)現(xiàn)節(jié)能。當(dāng)nRF905處于掉電模式時(shí),SPI接口仍可以保持在工作狀態(tài);通過Shock Burst收發(fā)模式進(jìn)行無線數(shù)據(jù)傳輸,收發(fā)可靠,使用方便。因此,nRF905在諸多領(lǐng)域都具有廣闊的應(yīng)用前景,這些特點(diǎn)決定了nRF905芯片非常適合應(yīng)用于無線傳感器網(wǎng)絡(luò)中。
無線收發(fā)模塊的電路如圖2所示。控制引腳TX_EN、TRX_EN、PWR_UP直接與微控制器的P44、P45、P46相連;狀態(tài)引腳DR與微控制器的中斷引腳P120/INTP0相連,狀態(tài)引腳CD、AM直接與微控制器P47、P10相連;由于系統(tǒng)沒有SPI總線,因此采用I/O引腳模擬SPI總線通信。微控制器的P11、P12、P13分別與nRF905的SCK、MOSI、MISO連接;微控制器的P14與SPI的控制端口CSN連接。 nRF905通過電容和電感與天線J2相連接。nRF905帶有外部時(shí)鐘輸出引腳uPCLK,能夠輸出四種不同頻率的時(shí)鐘,采用示波器連接uPCLK引腳可測(cè)試nRF905是否工作正常。
存儲(chǔ)模塊設(shè)計(jì)
傳感器節(jié)點(diǎn)需存儲(chǔ)用戶設(shè)定的參數(shù)以及運(yùn)行記錄等大量數(shù)據(jù)。本設(shè)計(jì)選擇AT24C256作為存儲(chǔ)芯片,它是ATMEL公司推出的低功耗256K串行 EEPROM芯片,具有如下特點(diǎn):①具有三種工作電壓,分別為5.0V、2.7V、1.8V;②具有64字節(jié)頁寫模式;③符合雙向數(shù)據(jù)傳送協(xié)議;④具有硬件寫保護(hù)和軟件數(shù)據(jù)保護(hù)功能;⑤采用斯密特觸發(fā),可抑制輸入噪聲;⑥采用2線串行接口;⑦內(nèi)部可以組織成32K×8存儲(chǔ)單元。
AT24C256存儲(chǔ)器電路如圖3所示,AT24C256的A0引腳和A1引腳接地。由于µPD78F0485微控制器沒有I2C接口,因此采用µPD78F0485的I/O引腳模擬I2C總線通信。采用µPD78F0485的I/O引腳控制EEPROM的供電,將存儲(chǔ)器的電源引腳VCC 與µPD78F0485的P12引腳相連接。使用存儲(chǔ)器時(shí),需設(shè)置P12引腳輸出高電平,以實(shí)現(xiàn)為存儲(chǔ)器供電;不使用存儲(chǔ)器時(shí),可將存儲(chǔ)器電源關(guān)掉,節(jié)省電量,這也保證了電源不穩(wěn)定時(shí)不能訪問EEPROM,防止EEPROM讀寫出現(xiàn)錯(cuò)誤。µPD78F0485的P13和P14與AT24C256的SCL引腳和SDA引腳相連接。
圖3 AT24C256存儲(chǔ)器電路圖
按鍵模塊設(shè)計(jì)
按鍵是無線傳感器節(jié)點(diǎn)為用戶提供的操作接口,可利用按鍵設(shè)置和讀取節(jié)點(diǎn)的參數(shù),查詢節(jié)點(diǎn)的運(yùn)行結(jié)果、工作狀態(tài)和歷史記錄。本設(shè)計(jì)采用的微控制器µPD78F0485具有按鍵中斷功能,具有8個(gè)通道,網(wǎng)絡(luò)系統(tǒng)使用了KEY1、KEY2、KEY3和KEY4四個(gè)按鍵引腳,它們分別與µPD78F0485的P40引腳、P41引腳、P42引腳和P43引腳相連接,按鍵電路如圖4所示。
圖4 按健電路圖
USB通訊模塊設(shè)計(jì)
利用USB接口可實(shí)現(xiàn)傳感器節(jié)點(diǎn)與計(jì)算機(jī)的通信。本設(shè)計(jì)采用了高度集成USB轉(zhuǎn)UART橋接器CP2102,它集成了USB 2.0全速功能控制器、USB轉(zhuǎn)發(fā)器、振蕩器和帶有全部調(diào)制解調(diào)器控制信號(hào)的串行數(shù)據(jù)總線(UART)接口;外圍元件較少,可以節(jié)約PCB成本和空間。使用USB通訊時(shí),首先將USB電路板一端與傳感器節(jié)點(diǎn)的電路板連接,另一端與計(jì)算機(jī)連接,然后將CP2102的驅(qū)動(dòng)程序安裝在計(jì)算機(jī)上,計(jì)算機(jī)將 CP2102虛擬成一個(gè)COM口,最后就能夠以訪問一個(gè)標(biāo)準(zhǔn)COM口的硬件方式訪問CP2102。USB通訊電路如圖5所示,網(wǎng)絡(luò)系統(tǒng)將µPD78F0485的異步串行接口UART6與CP2102的異步串行接口相連接。
圖5 USB通訊電路圖
液晶顯示模塊設(shè)計(jì)
溫度傳感器網(wǎng)絡(luò)工作時(shí),需讀取和設(shè)置節(jié)點(diǎn)的參數(shù)。因此,需采用LCD顯示器來顯示所需設(shè)置的參數(shù)命令和參數(shù)數(shù)據(jù)。本設(shè)計(jì)采用的µPD78F0485微控制器帶有LCD控制器/驅(qū)動(dòng)器,具有自動(dòng)讀取存儲(chǔ)器顯示數(shù)據(jù),自動(dòng)輸出COMMON和SEGMENT信號(hào)的功能。µPD78F0485具有6種顯示模式,每種顯示模式具有6種不同的幀頻率,本文選用1/3分壓、1/4分時(shí)的驅(qū)動(dòng)方式,使用副時(shí)鐘作為LCD的時(shí)鐘源,采用內(nèi)部分壓的方式來驅(qū)動(dòng)具有4個(gè) COM端、20個(gè)SEG的LCD顯示器,該顯示器可同時(shí)顯示8個(gè)數(shù)字、7個(gè)小數(shù)點(diǎn)、17個(gè)常用標(biāo)號(hào)。
溫度采集模塊設(shè)計(jì)
本設(shè)計(jì)溫度采集芯片采用數(shù)字化溫度傳感器DS18B20,它由半導(dǎo)體公司Dallas推出,具有如下特點(diǎn):①測(cè)溫范圍-55℃~+125℃,在 -10℃~+85℃范圍內(nèi)的精度為±0.5℃。②測(cè)量結(jié)果為數(shù)字信號(hào),以“一線總線”傳給MCU,并且也傳送CRC校驗(yàn)碼。③具有較高的分辨率,擁有 9~12位分辨率可調(diào)的功能,所對(duì)應(yīng)的溫度分辨率分別為0.5℃、0.25℃、0.125和0.0625℃。④具有寄生電源供電和外部電源供電兩種模式,電壓范圍寬。其中,在外部電源供電模式下,DS18B20工作穩(wěn)定可靠,抗干擾能力強(qiáng),因此,本文采用外部供電模式,并將DS18B20的電源引腳連接到µPD78F0485的引腳,當(dāng)不測(cè)量溫度時(shí),將其外部電源關(guān)閉以降低節(jié)點(diǎn)的功耗。⑤體積小,減少了傳感器節(jié)點(diǎn)體積的大小。網(wǎng)絡(luò)系統(tǒng)測(cè)溫電路如圖6所示,µPD78F0485的P140引腳與DS18B20的電源引腳相連接,P133引腳與DS18B20的數(shù)據(jù)引腳相連接。
圖6 測(cè)溫電路圖
電量檢測(cè)模塊設(shè)計(jì)
溫度傳感器網(wǎng)絡(luò)采用電池供電,因而必須定時(shí)檢測(cè)電量,以避免節(jié)點(diǎn)電量不足而造成節(jié)點(diǎn)之間的通信故障,若電量不足,則提示更換電池。本設(shè)計(jì)采用µPD78F0485微控制器的10位逐次逼近性AD轉(zhuǎn)換器和微功率兩端帶隙穩(wěn)壓器LM385二極管來實(shí)現(xiàn)電量檢測(cè),電量檢測(cè)電路如圖7所示,P30引腳連接控制是否測(cè)量電量,用以控制是否進(jìn)行電量檢測(cè),P27/ANI連接穩(wěn)壓管LM385的電源端。穩(wěn)壓管LM385可工作在10mA~20mA的電流范圍內(nèi),具有非常低的溫度系數(shù)和動(dòng)態(tài)阻抗。
圖7 電量檢測(cè)電路圖
電源模塊設(shè)計(jì)
根據(jù)系統(tǒng)要求,本設(shè)計(jì)采用3.6V鋰電池供電,鋰電池具有容量大、體積小的特點(diǎn)。由于USB通訊模塊使用的是5V電壓,因此需采用LM1117進(jìn)行 5V到3.6V電壓的轉(zhuǎn)換。電源模塊電路如圖8所示,電源模塊提供5V和3.6V的兩種電源接口,采用三端穩(wěn)壓器LM1117可將5V電壓轉(zhuǎn)換為3.6V 電壓。
圖8 電源模塊電路圖
基于藍(lán)牙技術(shù)的無線溫度傳感器應(yīng)用
1 系統(tǒng)硬件結(jié)構(gòu)
無線溫度傳感器主要由單片機(jī)控制單元、藍(lán)牙模塊、溫度檢測(cè)單元、接口電路及其它輔助電路組成,系統(tǒng)結(jié)構(gòu)如圖1所示??刂茊卧桕枂纹瑱C(jī)為整個(gè)系統(tǒng)的核心,對(duì)檢測(cè)到的溫度數(shù)據(jù)進(jìn)行轉(zhuǎn)換、顯示、傳輸,外擴(kuò)4MBFLAsH用于存儲(chǔ)程序和溫度數(shù)據(jù)。藍(lán)牙模塊包括藍(lán)牙芯片、放大器、非平衡變壓器(Balun)等,負(fù)責(zé)與藍(lán)牙控制終端進(jìn)行無線連接和數(shù)據(jù)傳輸,按鍵完成系統(tǒng)設(shè)置、復(fù)位等信息輸人,測(cè)量的溫度數(shù)據(jù)在傳輸?shù)娇刂平K端的同時(shí)在LED上顯示,并通過揚(yáng)聲器定時(shí)語音播報(bào)當(dāng)前溫度數(shù)據(jù)和超限報(bào)警。
1.1 單片機(jī)控制單元
控制單元采用SPCE061A單片機(jī),工作電壓為2.6~3.6V,工作頻率為0.32一49.152MHz,較高的處理速度使其能夠非常容易、快速地處理復(fù)雜的數(shù)字信號(hào)。該芯片內(nèi)包括ADC、DAC、定時(shí)器/計(jì)數(shù)器、RAM、FLASH、ROM等器件,具有一套高效率的指令系統(tǒng)和集成開發(fā)環(huán)境,并且支持標(biāo)準(zhǔn)C語言,可以實(shí)現(xiàn)C語言與凌陽匯編語言的相互調(diào)用,為硬件設(shè)計(jì)和軟件開發(fā)提供了便利條件。另外,芯片內(nèi)置的2路10位精度的DAC,再配合豐富的語音函數(shù)庫,可方便地完成語音的播放,非常適合于語音應(yīng)用的開發(fā)。
1.2 溫度檢瀏單元
溫度檢測(cè)單元采用D1S8B02型傳感器,是美國DALLAS公司推出的一種改進(jìn)型智能溫度傳感器,與傳統(tǒng)的熱敏電阻等測(cè)溫元件相比,它能直接讀出被測(cè)溫度,并且可根據(jù)實(shí)際要求通過編程實(shí)現(xiàn)9~12位的數(shù)字值讀數(shù)方式。DS18BZo與SPCEo61A單片機(jī)的接口電路如圖2所示,由于DS18B20 傳感器支持“一線總線”接口,因此只需將DS18B20信號(hào)線接到單片機(jī)的1位1/0線上即可,而且在1根1/0線上可以掛接多個(gè)傳感器實(shí)現(xiàn)多點(diǎn)溫度測(cè)量。
為了提高抗干擾性能,采用外加電源方式對(duì)傳感器供電。
1.3 無線傳愉控制單元
隨著藍(lán)牙芯片單芯片的集成度越來越高和集成了芯片、Balun、晶振等各種藍(lán)牙模塊的面世,將藍(lán)牙嵌人到其它數(shù)字化設(shè)備中也越來越容易實(shí)現(xiàn)。本系統(tǒng)無線傳輸由藍(lán)牙模塊BCM02實(shí)現(xiàn),BCM02核心采用CSR(CambridgesiliconRadio)公司的BlueCoreZ一External 藍(lán)牙芯片,外圍擴(kuò)展T晶振、FLASH、Balun、帶通濾波器(BPF)、1.SV穩(wěn)壓電路,可以根據(jù)不同的應(yīng)用場(chǎng)合快速開發(fā),模塊符合藍(lán)牙Vl.1標(biāo)準(zhǔn),最大發(fā)射功率設(shè)計(jì)為2.smw(4dB/m),是一個(gè)二級(jí)藍(lán)牙芯片,工作電壓為3士0.3V。BCMoZ通過UART口與單片機(jī)相連,為簡化設(shè)計(jì),將所需的藍(lán)牙協(xié)議棧和無線傳輸應(yīng)用程序直接固化在藍(lán)牙模塊中,利用藍(lán)牙提供一個(gè)透明的無線數(shù)據(jù)傳輸,而單片機(jī)只要設(shè)置好波特率等參數(shù)即可進(jìn)行通信,傳輸控制由單片機(jī)完成。
2 軟件設(shè)計(jì)及流程
2.1 單片機(jī)軟件設(shè)計(jì)
單片機(jī)軟件部分主要包括主程序、中斷子程序、測(cè)溫子程序、轉(zhuǎn)換顯示及存儲(chǔ)子程序、UART通信子程序、語音播放子程序等,為了降低功耗,使用中斷來喚醒單片機(jī)進(jìn)行測(cè)溫等工作,因此主程序部分比較簡單,主要負(fù)責(zé)系統(tǒng)各部分初始化和中斷的調(diào)用,在系統(tǒng)初始化完成后就直接進(jìn)人睡眠模式,當(dāng)中斷到來時(shí)單片機(jī)退出睡眠模式,調(diào)用中斷子程序?qū)崿F(xiàn)測(cè)溫、轉(zhuǎn)換顯示、溫度數(shù)據(jù)的傳輸以及語音的播報(bào)和報(bào)警等功能。
2.2 藍(lán)牙應(yīng)用程序設(shè)計(jì)
本系統(tǒng)是基于藍(lán)牙的串口應(yīng)用模型SPP(SerialPortProfile)實(shí)現(xiàn)無線數(shù)據(jù)的透明傳輸,在核心協(xié)議棧之上編寫自己的上層應(yīng)用程序。 CSR的藍(lán)牙核心協(xié)議棧包括HCI、LZCAP、SDP、RFCOMM等,以固件的形式提供給開發(fā)人員,用戶編寫的應(yīng)用程序和協(xié)議棧一起運(yùn)行在CSR嵌人式環(huán)境中。在CSR程序中,不同任務(wù)之間可以異步地發(fā)送消息,每一個(gè)任務(wù)在創(chuàng)建的時(shí)候可以讓其中一個(gè)擁有消息隊(duì)列,其它的就把發(fā)給任務(wù)的消息提交給該消息隊(duì)列,由任務(wù)調(diào)度程序自動(dòng)運(yùn)行獲得任務(wù)的消息。藍(lán)牙模塊上層應(yīng)用程序流程如圖3所示。
3低功耗設(shè)計(jì)
作為無線傳感器,低功耗運(yùn)行可以最大限度地延長設(shè)備的有效使用時(shí)間,為了獲得最佳性能,設(shè)計(jì)時(shí)在電源損耗和可用性方面必須根據(jù)情況權(quán)衡使用,除了選用低功耗器件外,筆者從以下幾個(gè)方面設(shè)計(jì)了電源管理程序以盡量減少無線溫度傳感器的功耗。
?。?)由于無線溫度傳感器負(fù)責(zé)向控制終端傳輸數(shù)據(jù),因此何時(shí)進(jìn)行數(shù)據(jù)采集、何時(shí)進(jìn)行數(shù)據(jù)傳輸可以由控制終端決定,非常適合使用休眠模式和呼吸模式,通過減少藍(lán)牙設(shè)備在微微網(wǎng)中的活動(dòng)達(dá)到節(jié)電的目的,并且控制終端一般接有持久的電源,所以電源管理的開銷由終端來負(fù)責(zé)比較合適。把控制終端作為主設(shè)備,將電源管理程序設(shè)計(jì)在終端的應(yīng)用控制層中,并由控制終端完成設(shè)備的查詢、配對(duì)、建鏈等工作,當(dāng)無線傳感器與控制終端配對(duì)成功并建立RFCOMM連接后進(jìn)人休眠模式,此時(shí)主從設(shè)備仍然保持著RFCOMM信道,只是不能發(fā)送和接收數(shù)據(jù),休眠模式下信標(biāo)間隔可設(shè)為15,電流大概在lmA左右。當(dāng)需要進(jìn)行數(shù)據(jù)傳輸時(shí),退出休眠模式進(jìn)人呼吸模式,通過呼吸時(shí)隙發(fā)送數(shù)據(jù),呼吸間隔可設(shè)為20~40ms,間隔過大會(huì)帶來明顯延遲,當(dāng)數(shù)據(jù)傳輸結(jié)束后再次進(jìn)人休眠模式,從而盡可能地降低能耗。
?。?)CSR的BlueCore芯片提供T獨(dú)特的硬件節(jié)能方法—深度睡眠(Depslep)模式,進(jìn)人和退出深度睡眠模式至少需要10ms,通過按鈕或事件進(jìn)人深度睡眠模式很大程度上降低了損耗。當(dāng)用戶確定將有較長時(shí)間不使用無線溫度傳感器時(shí),可通過控制終端發(fā)送事件消息進(jìn)人深度睡眠模式,需要使用時(shí)再通過消息快速退出。在深度睡眠模式下電流一般可控制在50拼A左右。
(3)凌陽單片機(jī)SPCE06lA也可以應(yīng)用CPU的睡眠模式,且A口具有鍵喚醒功能,將BCM02的PIOS與單片機(jī)的IOA7相連接,當(dāng)藍(lán)牙模塊退出休眠模式,發(fā)送指令進(jìn)行數(shù)據(jù)采集時(shí),PIOS輸出高電平,通過IOA7電平的變化產(chǎn)生中斷來喚醒CPU進(jìn)人工作狀態(tài)。
基于LTP5901的無線溫度傳感器設(shè)計(jì)方案#e#
自給自足,基于LTP5901的無線溫度傳感器設(shè)計(jì)方案
設(shè)計(jì)概述
圖 1 顯示了該設(shè)計(jì)的方框圖。溫度傳感器基于一個(gè)熱敏電阻器,該熱敏電阻器由低噪聲 LT6654 電壓基準(zhǔn)偏置。24 位ΔΣ ADC LTC2484 讀取熱敏電阻器的電壓,并通過 SPI 接口報(bào)告讀取的結(jié)果。LTP5901 是無線電模塊,不僅含有無線電單元,還含有自動(dòng)構(gòu)成 IP 網(wǎng)格網(wǎng)絡(luò)所需的連網(wǎng)固件。此外,LTP5901 還有一個(gè)內(nèi)置的微處理器,該微處理器讀取 LTC2484 ADC SPI 端口,并管理面向信號(hào)鏈路組件的電源排序。LTC3330 是一款低功率、開關(guān)模式雙輸出電源,當(dāng)可得到足夠的光照時(shí),LTC3330 靠太陽能電池板供電,當(dāng)光照不足但需要保持輸出電壓穩(wěn)定時(shí),LTC3330 用電池供電。LTC3330 還含有一個(gè) LDO,用來設(shè)定溫度傳感器供電電源的占空比。
圖 1:通過將無線電模塊連至ADC、基準(zhǔn)和熱敏電阻器以構(gòu)成無線溫度傳感器。該電路由一個(gè)可從電池或太陽能電池板獲取電能的能量收集器供電。(BATTERY:電池;SOLAR PANEL:太陽能電池板;DUTY CYCLED:所設(shè)定的占空比;WIRELESS NETWORK:無線網(wǎng)絡(luò);THERMISTOR BRIDGE:熱敏電阻器電橋)
信號(hào)鏈路
這個(gè)設(shè)計(jì)用一個(gè)熱敏電阻器測(cè)量溫度。熱敏電阻是非常適合在溫度遠(yuǎn)遠(yuǎn)超出人們感興趣的典型環(huán)境溫度范圍中讀取溫度值。熱敏電阻器指的是具備很大負(fù)溫度系數(shù)的電阻器。例如,器件型號(hào)為 KS502J2 (按照 US Sensor 公司的規(guī)定) 的熱敏電阻,在 25°C 時(shí)阻值為 5kΩ,在 -30°C 至 +70°C 溫度范圍內(nèi),電阻值從 88kΩ 變化到 875Ω。
該熱敏電阻器與兩個(gè)準(zhǔn)確的 49.9kΩ 電阻串聯(lián),并由精確的電壓基準(zhǔn) LT6654 偏置 (圖 2)。LTC2484 ΔΣ ADC 以 24 位分辨率測(cè)量電阻分壓器的分壓比。該 ADC 的總體未調(diào)整誤差為 15ppm,對(duì)于本文應(yīng)用所用的熱敏電阻器斜率而言,這對(duì)應(yīng)于少于 0.05°C 的溫度不確定性。這個(gè)熱敏電阻器規(guī)定的溫度準(zhǔn)確度為 0.1°C,因此無需任何校準(zhǔn),所測(cè)量的溫度就能達(dá)到這樣的準(zhǔn)確度。
圖 2:采用 LTC2484 24 位 ADC 讀取熱敏電阻的電壓。因?yàn)檩斎牍材k妷菏侵弥?,所?Easy Drive ADC 不吸取輸入電流,從而很容易準(zhǔn)確獲得成比例的讀數(shù)。(3-WIRE SPI INTERFACE:3 線 SPI 接口)
該 ADC 的噪聲低于 4μVp-p,這對(duì)應(yīng)不到 0.005°C 的溫度變化。因此,通過校準(zhǔn),這個(gè)系統(tǒng)可以用來以極其精細(xì)的分辨率測(cè)量溫度。既然 ADC 測(cè)量熱敏電阻電壓與基準(zhǔn)電壓值之比,所以嚴(yán)格說來,基準(zhǔn)電壓無需準(zhǔn)確。但是它必須是低噪聲的,因?yàn)樵?ADC 轉(zhuǎn)換時(shí),基準(zhǔn)電壓變化可能引起誤差。
LTC2484 ADC 采用了 Easy Drive輸入結(jié)構(gòu)。這意味著在轉(zhuǎn)換時(shí)的凈差分采樣電流接近為零。因此,流經(jīng)阻性熱敏電阻器網(wǎng)絡(luò)的輸入采樣電流不引起任何測(cè)量誤差,這意味著,無需單獨(dú)的運(yùn)算放大器緩沖器。旁路電容器在高頻時(shí)提供一條低阻抗通路。在很多情況下,不需要不斷測(cè)量溫度,而是每秒測(cè)量一次甚至每分鐘只測(cè)量一次。在系統(tǒng)未測(cè)量溫度時(shí),節(jié)省功耗是有意義的。如下所述,這個(gè)應(yīng)用電路正是這么做的。
電阻器網(wǎng)絡(luò)從 2.5V 基準(zhǔn)吸取最大 25μA 電流。為了避免測(cè)量之間的功率損耗,將基準(zhǔn)電源的工作周期調(diào)整為僅在測(cè)量期間導(dǎo)通。ADC 輸入的 RC 時(shí)間常數(shù)大約為 5ms。通過在進(jìn)行測(cè)量之前 80ms接通電源,可確保 ADC 輸入完全穩(wěn)定。實(shí)際上,既然兩個(gè)輸入節(jié)點(diǎn)以相同的斜率接通,所以遠(yuǎn)遠(yuǎn)不用理論的穩(wěn)定時(shí)間那么久,讀數(shù)就已準(zhǔn)確。LT6654 由 LTC3330 的 3V LDO 輸出供電。在讀取溫度讀數(shù)之前和之后的恰當(dāng)時(shí)間,LTP5901 微處理器驅(qū)動(dòng) LTC3330 中 LDO 的使能引腳至高電平和低電平。
在未進(jìn)行轉(zhuǎn)換時(shí),LTC2484 自動(dòng)進(jìn)入休眠模式。與無線電已經(jīng)很低的功率相比,1μA 的睡眠電流更低。因此,不必設(shè)定至 ADC 供電電源的占空比。通過保持 ADC 的電源電壓始終與 LTP5901 相同,可確保 SPI 接口上的邏輯電平始終保持不變,這有助于實(shí)現(xiàn)簡單的設(shè)計(jì)。
通過 SPI 端口提供轉(zhuǎn)換結(jié)果以后,LTC2484 自動(dòng)地開始進(jìn)行新的轉(zhuǎn)換,并將轉(zhuǎn)換結(jié)果存儲(chǔ)到其內(nèi)部寄存器中,直到用戶再次要求讀取轉(zhuǎn)換結(jié)果。在需要非常頻繁地讀取溫度值的系統(tǒng)中,這種工作方式是非常便利。但是,有些超低功率應(yīng)用可能在兩次讀數(shù)之間等待很長時(shí)間。為了確保提供給用戶的溫度數(shù)據(jù)始終是“新鮮”的讀數(shù),這類應(yīng)用首先切換 CSb 和 SCK 引腳,以將“陳舊的”溫度讀數(shù)從 ADC 寄存器中移出,然后自動(dòng)地開始進(jìn)行新的溫度轉(zhuǎn)換。微處理器一直等待到轉(zhuǎn)換結(jié)束為止,然后通過 SPI 端口讀取結(jié)果。即使新的溫度讀取過程會(huì)再次自動(dòng)開始,但是系統(tǒng)接下來會(huì)關(guān)閉熱敏電阻器網(wǎng)絡(luò) (通過關(guān)閉 LDO),因?yàn)檫@些額外的溫度讀數(shù)隨后將被忽略。
該溫度傳感器電路的總功耗可以按如下方法估計(jì)。首先,求基準(zhǔn) (350uA)、熱敏電阻器網(wǎng)絡(luò) (25μA) 和 ADC (轉(zhuǎn)換時(shí)為 160μA) 的電流之和,所得總電流為 535μA (參見表 1)。然后,考慮這一電流持續(xù)多長時(shí)間。ADC 每次轉(zhuǎn)換大約耗時(shí) 140ms,在每次轉(zhuǎn)換之前,等待 80ms,以讓基準(zhǔn)和熱敏電阻器穩(wěn)定。再加上一些 SPI 讀數(shù)所需時(shí)間,這樣接通時(shí)間大約為 300ms。在 300ms時(shí)間內(nèi)消耗 535μA 電流,相應(yīng)于 160μC 的電荷量。我們應(yīng)該在這個(gè)電荷量之上,再加上給 4.7μF 電源旁路電容器充電至電壓基準(zhǔn)所需的電荷量,因?yàn)槊看巫x數(shù)時(shí)這個(gè)節(jié)點(diǎn)都從 0V 充電至 3V。加上這個(gè) 14μC 的電荷量,每次讀取溫度數(shù)據(jù)時(shí)所需的總電荷量為 174μC。如果每隔 10 秒讀取一次溫度數(shù)據(jù),那么就可計(jì)算出,平均電流消耗為 17μA。其他平均電源電流的例子在表 2 中給出。
表 1:信號(hào)鏈路電流消耗 (工作時(shí))
表 2:基于溫度讀取頻率進(jìn)行電源管理的信號(hào)鏈路的平均電流消耗
LTC3330 管理這個(gè)應(yīng)用的所有電源。該芯片含有兩個(gè)開關(guān)模式電源和一個(gè)線性穩(wěn)壓器,采用小型單片封裝。降壓-升壓型轉(zhuǎn)換器可從電池取得功率,以保持穩(wěn)定的輸出電壓 (對(duì)這個(gè)應(yīng)用而言設(shè)定為 3.6V)。一個(gè)單獨(dú)的降壓型轉(zhuǎn)換器可從太陽能電池板取得功率,也將輸出電壓調(diào)節(jié)至相同的值。一個(gè)內(nèi)部優(yōu)先級(jí)區(qū)分器確保盡可能使用太陽能電源,僅當(dāng)需要時(shí)才會(huì)從電池吸取功率 (圖 3)。對(duì)于其他應(yīng)用,LTC3330 還支持 AC 能量收集電源,例如產(chǎn)生與振動(dòng)能量成比例的 AC 電壓之壓電晶體 (參見圖 4)。
圖 3:LTC3330 從太陽能電池板或電池取得功率,自動(dòng)地設(shè)定這兩種電源的優(yōu)先級(jí),以保持穩(wěn)定輸出電壓。一個(gè)額外的 LDO 輸出由邏輯輸入引腳控制,這用來設(shè)定溫度傳感器電源的占空比。LTC3330 產(chǎn)生一個(gè)輸出標(biāo)記,以指示正在使用的是太陽能電源還是電池電源。(SOLAR PANEL:太陽能電池板;BATTERY:電池)
圖 4:LTC3330 能量收集型 DC/DC 電池壽命延長器從壓電、太陽能或磁性能源收集能量。
LTC3330 吸取不到 1μA 靜態(tài)電流,非常適合這種低功耗無線應(yīng)用。電源功耗僅占總功耗的一小部分,所以大部分功率可用于“負(fù)載” (即溫度傳感器和無線網(wǎng)絡(luò))。
除了這兩個(gè)開關(guān)模式電源,LTC3330 還含有一個(gè)具備單獨(dú)使能引腳的 LDO。這功能對(duì)于這類占空比的應(yīng)用是很有用。電壓基準(zhǔn)和熱敏電阻器網(wǎng)絡(luò)用該 LDO 供電。這不僅降低了開關(guān)噪聲,還允許應(yīng)用切換信號(hào)鏈電源接通和關(guān)斷,同時(shí)保持無線電模塊的電源始終接通。即使無線電模塊在兩次傳輸之間不消耗太多功率,但是它必須始終保持偏置,以保持定時(shí)器正確運(yùn)行,這樣整個(gè)網(wǎng)絡(luò)就能保持時(shí)間同步了。無線電模塊內(nèi)的微處理器在恰當(dāng)?shù)臅r(shí)間給 LDO 使能引腳排序,使信號(hào)鏈路為讀取溫度數(shù)據(jù)做好準(zhǔn)備。
LTC3330 提供一個(gè)輸出標(biāo)記 (EH_ON),該標(biāo)記說明系統(tǒng)是在由電池還是太陽能電池板供電。能夠?qū)崟r(shí)訪問這一信息對(duì)最終用戶來說可能很重要。因此,我們讓無線電模塊中的微處理器讀取這一輸出標(biāo)記,并通過網(wǎng)絡(luò)與溫度數(shù)據(jù)一起傳送這一信息。EH_ON 輸出的邏輯電平是對(duì)于 LTC3330 的一個(gè)內(nèi)部偏置電壓,該偏置電壓隨工作模式不同而改變,可能高于 4V。我們不是將這個(gè)輸出引腳直接連接到電壓較低的無線電模塊邏輯輸入,而是對(duì)其進(jìn)行分壓,然后將其饋送給一個(gè)內(nèi)置的 10 位 ADC,該 ADC 是微處理器的組成部分。在本文情況下,我們僅將這個(gè) ADC 作為比較器使用,以指示 LTC3330 正在使用哪個(gè)電源。
無線網(wǎng)絡(luò)
LTP5901 是一個(gè)完整的無線電模塊,含有無線電收發(fā)器、嵌入式微處理器和網(wǎng)絡(luò)軟件。其物理設(shè)計(jì)由一塊小型印刷電路板組成,可非常容易地焊接到包含該應(yīng)用其余部分 (信號(hào)鏈路和電源管理) 之主電路板上。
在這個(gè)應(yīng)用中,LTP5901 執(zhí)行兩種功能:無線網(wǎng)絡(luò)和內(nèi)務(wù)處理微處理器 (圖 5)。當(dāng)給一個(gè)網(wǎng)絡(luò)管理器附近的多個(gè) LTP5901 節(jié)點(diǎn)加電后,這些節(jié)點(diǎn)相互自動(dòng)識(shí)別,并形成一個(gè)無線網(wǎng)格網(wǎng)絡(luò)。整個(gè)網(wǎng)絡(luò)自動(dòng)完成時(shí)間同步,這意味著每個(gè)無線電模塊都僅在非常短的特定時(shí)間間隔內(nèi)加電。因此,每個(gè)節(jié)點(diǎn)都可以既發(fā)揮傳感器信息源的作用,又作為路由節(jié)點(diǎn),以向管理器轉(zhuǎn)發(fā)來自其他節(jié)點(diǎn)的數(shù)據(jù)。這樣,即使所有節(jié)點(diǎn) (包括路由節(jié)點(diǎn)) 都以非常低的功率工作,依然可以建立一個(gè)高度可靠的低功耗網(wǎng)格網(wǎng)絡(luò),每個(gè)節(jié)點(diǎn)到管理器都有多條通路可用。這種無線電技術(shù)典型的節(jié)點(diǎn)間傳送距離為 100 米,在有利的戶外條件下,距離甚至可以更長。
圖 5:LTP5901-IPM 僅需要非常少的連接,就能運(yùn)行整個(gè)應(yīng)用。所有無線網(wǎng)絡(luò)功能 (包括固件和 RF 電路) 都已經(jīng)內(nèi)置在該模塊中。3線 SPI 主器件與 LTC2484 的 SPI 端口通信。GPIO 引腳 (DP2) 控制傳感器電源排序。內(nèi)置 ADC 充當(dāng)便利的電平轉(zhuǎn)換器,從 LTC3330 讀取能量收集狀態(tài)標(biāo)記 EH_ON。
LTP5901 含有一個(gè) ARM Cortex-M3 微處理器內(nèi)核,該內(nèi)核運(yùn)行網(wǎng)絡(luò)軟件。此外,這個(gè)內(nèi)核還可通過用戶提供的固件來設(shè)定,以執(zhí)行特定于用戶應(yīng)用的任務(wù)。因此,無需任何第三方微處理器,就能夠?qū)崿F(xiàn)很多應(yīng)用。在本文例子中,LTP5901 內(nèi)部的微處理器通過在合適的時(shí)間接通和斷開 LTC3330 的 LDO 來管理溫度傳感器的電源排序,以在兩次溫度讀取之間節(jié)省功率。LTP5901 直接與 24 位 ADC 的 SPI 端口通信,該 ADC 讀取溫度傳感器提供的溫度值。最后,LTP5901 從 LTC3330 讀取電源狀態(tài)輸出標(biāo)記 (EH_ON),該標(biāo)記指示用來給電路供電的是太陽能還是電池。
無線電模塊的功耗可以用凌力爾特在官網(wǎng)在線提供的工具“SmartMesh功率與性能估計(jì)器 (SmartMesh Power and Performance Estimator)”來估計(jì)。對(duì)于一個(gè)有 20 個(gè)節(jié)點(diǎn) (其中 10個(gè)節(jié)點(diǎn)以無線方式直接連接到管理器 (1 跳),另外 10 個(gè)節(jié)點(diǎn)間接連接到管理器 (兩跳) ) 的典型網(wǎng)絡(luò)而言,兩跳節(jié)點(diǎn)的平均功耗約為 20μA,1 跳節(jié)點(diǎn)則為 40μA。這些數(shù)字是在每個(gè)節(jié)點(diǎn)每 10 秒報(bào)告一次溫度數(shù)據(jù)的情況下得出的。1 跳節(jié)點(diǎn)消耗大約兩倍功率的原因是,它們不僅發(fā)送自己的傳感器數(shù)據(jù),還充當(dāng)路由節(jié)點(diǎn),轉(zhuǎn)發(fā)一些兩跳節(jié)點(diǎn)的傳感器數(shù)據(jù)。如果關(guān)閉一種稱為 “Advertising”(宣告) 功能,那么上述功率可以進(jìn)一步減少兩倍。一旦“宣告”功能關(guān)閉,網(wǎng)絡(luò)就不再識(shí)別想加入網(wǎng)絡(luò)的新節(jié)點(diǎn)。除了這點(diǎn)不同,關(guān)閉廣告功能對(duì)網(wǎng)絡(luò)運(yùn)行沒有任何影響。
總體功耗
完整應(yīng)用電路的總體功耗視各種不同因素而有所不同,其中包括每個(gè)傳感器測(cè)量溫度的頻度以及所有節(jié)點(diǎn)在網(wǎng)絡(luò)中的配置方式。對(duì)于一個(gè)每 10 秒報(bào)告一次溫度數(shù)據(jù)的傳感器節(jié)點(diǎn)而言,典型功耗為傳感器部分低于 20μA,無線電模塊部分可能為 20μA,總的平均負(fù)載電流約為 40μA。
小型 2 英寸 x 2 英寸太陽能電池板 (例如 Amorton 系列) 甚至在相對(duì)中等的室內(nèi)照明條件下 (200 流明),也可產(chǎn)生 40μA 電流,而在強(qiáng)光照條件下,則能夠產(chǎn)生大得多的電流。這意味著,在很多條件下,這個(gè)應(yīng)用可以完全依靠太陽能電池板電源運(yùn)行。如果該電路處于黑暗中,需要完全靠電池電源運(yùn)行,那么一節(jié) 2.4Ah AA 電池 (例如 Tadiran XOL 系列) 可給該應(yīng)用供電差不多7 年。在較低或可變光照條件下,該電路自動(dòng)在太陽能電源和電池電源之間來回切換,以便盡可能利用太陽能,以延長電池壽命。
評(píng)論