【技術分享】模擬電路故障診斷中的特征提取方法
故障特征提取是模擬電路故障診斷的關鍵,而模擬電路由于故障模型復雜、元件參數的容差、非線性、噪聲以及大規(guī)模集成化等現(xiàn)象使電路故障信息表現(xiàn)為多特征、高噪聲、非線性的數據集,且受到特征信號觀測手段、征兆提取方法、狀態(tài)識別技術、診斷知識完備程度以及診斷經濟性的制約,使模擬電路的故障診斷技術滯后于數字電路故障診斷技術而面臨巨大的挑戰(zhàn)。模擬電路故障診斷本質上等價于模式識別問題,因此研究如何把電路狀態(tài)的原始特征從高維特征空間壓縮到低維特征空間,并提取有效故障特征以提高故障診斷率就成了一個重要的課題。本文將簡要介紹部分模擬電路故障診斷中使用的特征提取方法的原理步驟及其優(yōu)缺點,為進一步的研究打下基礎。
本文引用地址:http://www.biyoush.com/article/201612/341056.htm基于統(tǒng)計理論的特征提取
傳統(tǒng)的基于統(tǒng)計理論的特征提取方法是考慮測點數據的一階矩和二階矩,根據這些測點數據的重要統(tǒng)計特征來降低特征空間維數達到有效特征提取的目的,其中包括基于可分離性準則、K-L變換、主元分析等特征提取方法。
主元分析是基于數據樣本方差-協(xié)方差(相關系數)矩陣的數據特征分析方法,它從特征有效性的角度,通過線性變換,在數據空間中找一組向量盡可能的解釋數據的方差,將數據從原來的高維空間映射到一個低維向量空間,降維后保留數據的主要信息,且主分量間彼此獨立,從而使數據更易于處理。在模擬電路故障診斷中,采用主元分析實現(xiàn)數據壓縮和特征提取的過程是:首先將原始特征數據標準化,消除原變量的量綱不同和數值差異太大帶來的影響;然后建立數據的相關矩陣,并計算矩陣的特征值及特征向量,并對所得的特征值進行排序;最后根據特征值的方差貢獻率選取主元,通常要求累計方差貢獻率達到80%到90%即可,診斷系統(tǒng)結構如圖1所示。經過主元分析將特征向量降維后,減少了診斷神經網絡的輸入,提高了網絡訓練速度,降低了神經網絡的計算復雜度。
圖1 基于主元分析的模擬電路故障診斷系統(tǒng)
基于統(tǒng)計理論的特征提取在應用中常常因為概率密度函數的分布問題使最優(yōu)變換矩陣的計算陷入困境,而高分辨特征提取所需的映射常常是非線性的,因此基于統(tǒng)計理論的線性變換方法在使用時受到了限制。進一步的研究方向是其方法的非線性延伸,如非線性主元變換以及和其它特征提取方法的融合使用。
基于小波分析的特征提取
在電路信號的特征提取中,常采用頻譜分析的方法。但是基于統(tǒng)計分析的傅立葉分析僅對不隨時間變化的平穩(wěn)信號十分有效,對于模擬電路響應信號中通常含有非平穩(wěn)或時變信息卻不能有效地提取故障特征。另外,模擬電路中含有大量噪聲,若直接將高頻成分當作噪聲成份舍棄會造成有效成分的損失,若單純對電路的輸出進行分析,會導致故障模糊集較多,分辨率不高。而小波分析所具有的時頻局部化特性、良好的去噪能力,無需系統(tǒng)模型結構的優(yōu)勢使之成為分析和處理此類信號的有效工具,也是目前在模擬電路故障診斷領域使用最多的一種特征提取方法,對模擬電路中的軟、硬故障均適用。
小波分析的基本原理是通過小波母函數在尺度上的伸縮和時域上的頻移來分析信號,適當選擇母函數可使擴張函數具有良好的局部性,非常適合對非平穩(wěn)信號進行奇異值分析,以區(qū)分信號的突變與噪聲。目前在模擬電路故障診斷文獻中用到了小波變換、小波包變換以及多小波變換等來對電路故障信息進行特征提取,對模擬電路瞬態(tài)信號的提取、消除電路噪聲和模擬電路特有的元件參數容差具有良好的效果。
小波分析技術實現(xiàn)時與神經網絡有兩種結合方式:一是松散型結合,二是緊致型結合。松散型結構是數據預處理采用的最常見的方式,目前緊致型結構的小波神經網絡也已成功用于模擬電路的去噪和特征提取。由于緊致型小波神經網絡是用非線性小波基代替非線性的sigmoid函數,通過仿射變換建立小波變換與神經網絡的連接,具有更強的逼近能力和收斂速度,不管是用于特征提取還是故障診斷都具有明顯的優(yōu)勢。緊致型小波神經網絡結構如圖2所示。
圖2 緊致型小波神經網絡結構圖
小波分析技術中的多分辨率分析每次只對信號的低頻部分進行分解,高頻部分卻保持不動導致了高頻部分的分辨率很低。而小波包變換卻提供了一種更加精細的分析方法,即可同時在低頻和高頻部分進行分解,以自適應地確定信號在不同頻段的分辨率,使分解序列在整個時頻域內都有較高的時頻分辨率和相同帶寬,更有效地進行特征提取。而多小波(Multiwavelet)變換可以同時擁有對稱性、正交性、短支撐性、高階消失矩等重要性質,彌補了單小波的不足,也開始成為特征提取研究的熱點。其與單小波的多分辨分析不同之處在于它的一個多分辨分析是由多個尺度函數所生成的,而其構造方法一般可以利用多小波的正交性、對稱性、短支撐性和逼近階次來構造相應的多尺度函數和多小波函數。
小波分析在特征提取中的優(yōu)勢,主要是利用小波基可以用較少非零小波系數去逼近一類實際函數的能力,選擇小波基應該是以最大量的產生接近于零的小波系數為優(yōu)。小波基的這種能力主要依賴其數學特性――正交性、消失矩、正則性、對稱性以及支集長度等來決定。在進行特征提取時選擇不同的母小波,效果會有很大差異,而對于電路的特征分析中選擇何種小波函數,目前還沒有完善的理論指導,多根據經驗或實驗來確定,因此小波母函數、小波系數、小波網絡結構及學習算法的優(yōu)選問題都是亟待解決的問題。
基于故障信息量的特征提取
基于故障信息量的特征提取方法是從不同思路考慮的一種新方法。模擬電路運行過程中若出現(xiàn)故障,則電路的特征參數會偏離正常狀態(tài),特征向量也會發(fā)生變化。因此,只要故障源存在,這種故障信息就會通過特征參數表現(xiàn)出來。若以信息量作為出現(xiàn)故障的量度便可以對電路的狀態(tài)進行診斷。按照信息理論的觀點,特征提取的目標是通過一個特殊的信道――即所采用的特征提取方法,使信道的信息最大化,信道損失最小,其原理如圖3所示。
圖3 信息傳輸模型與特征提取模型的比較
基于互信息熵的特征提取就是其中的方法之一,其理論依據是當某特征獲得最大互信息熵時,該特征就可獲得最大識別熵增量和最小誤識別概率,從而具有最優(yōu)特性。因此特征提取便是在電路的初始特征集合中尋找一個具有最大互信息熵或最小特征條件熵的集合。而最大互信息熵是由系統(tǒng)熵和后驗熵決定的,系統(tǒng)熵是一定的,因此后驗熵越小,則互信息越大,分類效果就越好,于是有效的特征提取轉化為在初始特征集給定后,尋找一個具有最大互信息熵或最小后驗熵的集合。在特征優(yōu)化過程中,隨著特征的刪除,會產生信息的損失,使得后驗熵趨于增加。后驗熵增值大小反應了刪除特征向量引起的信息損失的情況。按后驗熵由小到大排列,就可以獲得對應的特征刪除序列。
評論