基于轉(zhuǎn)矩?cái)_動(dòng)估計(jì)的永磁同步電機(jī)反推控制
隨著永磁磁性材料、半導(dǎo)體功率器件和控制理論的發(fā)展,永磁同步電動(dòng)機(jī)(pmsm)在當(dāng)前的中、小功率運(yùn)動(dòng)控制中起著越來越重要的作用。它具有如下的優(yōu)點(diǎn):結(jié)構(gòu)緊湊、高功率密度、高氣隙磁通和高轉(zhuǎn)矩慣性比等。因此,在伺服系統(tǒng)中越來越被廣泛應(yīng)用。另外,永磁同步電動(dòng)機(jī)是一個(gè)非線性系統(tǒng),它含有角速度ω與電流id或iq的乘積項(xiàng),因此要得到精確控制性能必須對(duì)角速度和電流進(jìn)行解耦。對(duì)于高精度速度跟蹤控制問題,載擾動(dòng)會(huì)對(duì)速度波動(dòng)產(chǎn)生影響。因此,需要對(duì)負(fù)載擾動(dòng)進(jìn)行估計(jì),來減小它的影響。
因此一般的線性控制方法效果不夠理想。為了解決其控制問題,當(dāng)前采用的非線性控制方法主要有變結(jié)構(gòu)控制、反饋線性化和無源控制等,但這些非線性控制的設(shè)計(jì)方法比較復(fù)雜,不易理解。本文結(jié)合矢量控制的坐標(biāo)變換方法,提出了backstepping控制策略,它不但能夠?qū)崿F(xiàn)永磁同步電動(dòng)機(jī)系統(tǒng)的完全解耦,設(shè)計(jì)方法比較簡(jiǎn)單,而且控制效果比傳統(tǒng)的pid控制更具有明顯的優(yōu)越性。另外,通過設(shè)計(jì)負(fù)載轉(zhuǎn)矩?cái)_動(dòng)觀測(cè)器[6]來降低負(fù)載擾動(dòng)對(duì)速度波動(dòng)的影響。
永磁同步電動(dòng)機(jī)的反推控制
數(shù)學(xué)模型
采用表面式的永磁同步電動(dòng)機(jī),其基于同步旋轉(zhuǎn)轉(zhuǎn)子坐標(biāo)的d-q模型[1]如下:
其中:ud, uq是d,q軸定子電壓;id,iq是d,q軸定子電流;r是定子電阻;l是定子電感;tl是恒定負(fù)載轉(zhuǎn)矩;j是轉(zhuǎn)動(dòng)慣量;b是粘滯磨擦系統(tǒng);p是極對(duì)數(shù);ω是轉(zhuǎn)子機(jī)械角速度;φf是永磁磁通。
backstepping控制實(shí)現(xiàn)
backstepping 作為一種有效的非線性控制設(shè)計(jì)方法,它是基于李亞普諾夫函數(shù)設(shè)計(jì)的控制,因此設(shè)計(jì)的控制器能夠保證系統(tǒng)的全局漸近穩(wěn)定,并且可以達(dá)到電流跟蹤的效果,使得系統(tǒng)具有快速的響應(yīng)速度[2]。
根據(jù)backstepping設(shè)計(jì)步驟[3,4],可以設(shè)計(jì)實(shí)際的控制ud,、uq為:
負(fù)載擾動(dòng)觀測(cè)器設(shè)計(jì)
在一些高精度伺服系統(tǒng)中,負(fù)載擾動(dòng)會(huì)產(chǎn)生變化,使速度產(chǎn)生波動(dòng),從而導(dǎo)致系統(tǒng)伺服性能的下降。因此,在高精度速度跟蹤控制中,需要對(duì)負(fù)載擾動(dòng)進(jìn)行估計(jì),實(shí)時(shí)加以在線補(bǔ)償。
由式(3),得:
(6) 其中:
由于負(fù)載擾動(dòng)不易直接測(cè)量,這里可以通過已獲得的iq、ω加以觀測(cè)??紤]到iq、ω的測(cè)量會(huì)產(chǎn)生噪聲誤差,故在tl觀測(cè)器的輸出端附加一濾波器,以消除上述的影響。對(duì)式(6)取拉斯變換得:
?。?)
令,取拉斯反變換,得:
?。?)
式(15)可變?yōu)椋?br/> (9)
則所設(shè)計(jì)的負(fù)載擾動(dòng)觀測(cè)器如圖1所示。
圖1 負(fù)載擾動(dòng)觀測(cè)器
評(píng)論