基于一種新型的三頻帶通濾波器應用設計
隨著無線局域網(wǎng)(WLAN)和全球微波接入互操作(Wimax)的迅速發(fā)展,多頻通信系統(tǒng)將成為今后無線通信的主導發(fā)展方向。本文提出了一種新型的三頻帶通濾波器設計方法,構成該濾波器的諧振腔是通過在通常的開環(huán)諧振腔內(nèi)加載一個倒F型枝節(jié),通過調(diào)節(jié)該枝節(jié)的各段長度及位置就可以實現(xiàn)所需要的三個諧振頻率。
本文引用地址:http://www.biyoush.com/article/201612/328005.htm1.傳統(tǒng)的三頻帶通濾波器的設計與分析
傳統(tǒng)的三頻帶通濾波器通常采用階梯阻抗諧振腔(SIR),通過調(diào)節(jié)階梯阻抗微帶線的電長度和特性阻抗,實現(xiàn)三個諧振頻率,這種方法設計過程較為復雜,而且需要采用高阻抗微帶線才能達到設計目標,這會使設計中的高阻微帶線過細,導致加工困難,影響濾波器特性。
2.新穎的倒F型枝節(jié)加載開環(huán)諧振腔的設計與分析
2.1 結構
結構如圖1所示,利用外圍尺寸La確定諧振腔的基本諧振模式后,只需要通過調(diào)節(jié)枝節(jié)的長度L1和L2及位置Ls和L3,就可以把諧振腔的高次諧振模式調(diào)節(jié)到所需要的位置,從而實現(xiàn)三頻帶通濾波器的設計,而不需要改變微帶線的寬度,從而有效避免使用太細的微帶線進行設計,從而使三頻帶通濾波器的加工更加容易,有效減小加工誤差。
2.2 仿真
對該諧振腔利用軟件Ansoft HFSS進行仿真得到其前三個諧振頻率隨諧振腔結構參數(shù)的變化曲線由圖2給出。圖2(a)繪出了圖1結構的諧振腔前三個諧振頻率隨諧振腔外圍尺寸La變化的曲線,并與不加載倒F型枝節(jié)的開環(huán)諧振腔諧振頻率進行比較,分別用withF和withoutF表示。從圖2(a)中可以發(fā)現(xiàn),諧振腔的基模諧振頻率在兩種情況下基本保持一致,而高次諧振模式的頻率值由于倒F型枝節(jié)的存在發(fā)生了明顯的變化,可見加載倒F型枝節(jié)可以有效的降低高次諧振模式的頻率值,而基模的頻率可通過不加載倒F型枝節(jié)的諧振腔進行初步估計,即改變諧振腔的外圍尺寸La調(diào)節(jié)基模的諧振頻率。
倒F型枝節(jié)加載的開環(huán)諧振腔的前三個諧振頻率隨枝節(jié)長度L1變化的曲線由圖2(b)給出。從圖中可以看出,隨著L1的增加,高次模式頻率降低,而基模的頻率幾乎保持不變。因此,在諧振腔外圍尺寸不變的條件下,我們可以通過調(diào)節(jié)枝節(jié)長度L1的值改變高次模式頻率,以實現(xiàn)所需要的頻率比。
2.3 倒F枝節(jié)的位置及長度對三頻帶通濾波器頻率比的影響
改變枝節(jié)的長度參數(shù)L1,L2,位置參數(shù)Ls和L3,就可以計算出隨參數(shù)L1變化的高次諧振模式頻率f3,f2與基模頻率f1的比值f3/f1和f2/f1,這種設計方法的頻率比的可調(diào)范圍是比較大的。取Ls=7mm和17mm時,參數(shù)L1和Ls對頻率比具有較大的影響,而L3=1mm和9mm時,參數(shù)L3和L2對頻率比的影響相對較小。因此,我們在設計中,可以先調(diào)節(jié)參數(shù)L1和Ls粗略的確定所需要的頻率比,再改變參數(shù)L3和L2的值進行更為精確的設計,以實現(xiàn)我們的設計目標。
從以上的分析可以看出,改變倒F枝節(jié)的位置及長度可以實現(xiàn)各種頻率比的三頻帶通濾波器設計,而且該種設計方法結構簡單,加工容易,可廣泛應用于多頻無線通信系統(tǒng)中。
3.結語
本文對多頻帶通濾波器的設計中,提出了一種可實現(xiàn)三通帶設計的倒F型枝節(jié)加載諧振腔,對它的特性進行了分析研究,通過調(diào)節(jié)枝節(jié)的長度及位置,可實現(xiàn)不同的頻率比以適應于多頻通信系統(tǒng)的應用。證明了這種方法在設計無線通信系統(tǒng)三頻帶通濾波器的可實用性。
評論