在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > ARM Linux內(nèi)核啟動2

            ARM Linux內(nèi)核啟動2

            作者: 時間:2016-11-09 來源:網(wǎng)絡(luò) 收藏
            上一篇ARM Linux內(nèi)核啟動(1)的銜接。

            接著上一篇說,看下面源碼:

            本文引用地址:http://www.biyoush.com/article/201611/317996.htm

            /*
            * Setup the initial page tables. We only setup the barest
            * amount which are required to get the kernel running, which
            * generally means mapping in the kernel code.只創(chuàng)建內(nèi)核代碼的映射
            *
            * r5 = physical address of start of RAM
            * r6 = physical IO address
            * r7 = byte offset into page tables for IO
            * r8 = page table flags
            */
            __create_page_tables:
            pgtblr4, r5@ page table address頁表地址


            /*
            * Clear the 16K level 1 swapper page table
            */
            movr0, r4
            movr3, #0
            addr2, r0, #0x4000
            1:strr3, [r0], #4
            strr3, [r0], #4
            strr3, [r0], #4
            strr3, [r0], #4
            teqr0, r2
            bne1b

            /*
            * Create identity mapping for first MB of kernel to
            * cater for the MMU enable. This identity mapping
            * will be removed by paging_init(). We use our current program
            * counter to determine corresponding section base address.
            */現(xiàn)在只創(chuàng)建開始1M的映射,其他外設(shè)寄存器空間的映射由paging_init()創(chuàng)建
            movr2, pc, lsr #20@ start of kernel section
            addr3, r8, r2, lsl #20@ flags + kernel base
            strr3, [r4, r2, lsl #2]@ identity mapping


            /*
            * Now setup the pagetables for our kernel direct
            * mapped region. We round TEXTADDR down to the
            * nearest megabyte boundary. It is assumed that
            * the kernel fits within 4 contigous 1MB sections.
            */現(xiàn)在為內(nèi)核直接映射區(qū)建立頁表。我們大概將TEXTADDR降到最近的M區(qū)域
            addr0, r4, #(TEXTADDR & 0xff000000) >> 18@ start of kernel
            strr3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
            addr3, r3, #1 << 20
            strr3, [r0, #4]!@ KERNEL + 1MB
            addr3, r3, #1 << 20
            strr3, [r0, #4]!@ KERNEL + 2MB
            addr3, r3, #1 << 20
            strr3, [r0, #4]@ KERNEL + 3MB

            /*
            * Then map first 1MB of ram in case it contains our boot params.
            */
            addr0, r4, #VIRT_OFFSET >> 18
            addr2, r5, r8
            strr2, [r0]

            linux內(nèi)核中3GB以上的地址空間為內(nèi)核空間,所以需要把內(nèi)核所在的物理空間地址映射到3GB以上。這里只映射了4MB。注意第一節(jié)進行了兩次映射,一個和物理地址相同映射,另一個映射到3GB以上。

            ......這中間還有一段代碼,就不分析了,都是有關(guān)調(diào)試的。

            /*
            * Read processor ID register (CP#15, CR0), and look up in the linker-built
            * supported processor list. Note that we cant use the absolute addresses
            * for the __proc_info lists since we arent running with the MMU on
            * (and therefore, we are not in the correct address space). We have to
            * calculate the offset.
            *
            * Returns:
            *r5, r6, r7 corrupted
            *r8 = page table flags
            *r9 = processor ID
            *r10 = pointer to processor structure
            */
            __lookup_processor_type:
            adrr5, 2f
            ldmiar5, {r7, r9, r10}
            subr5, r5, r10@ convert addresses
            addr7, r7, r5@ to our address space
            addr10, r9, r5
            mrcp15, 0, r9, c0, c0@ get processor id
            1:ldmiar10, {r5, r6, r8}@ value, mask, mmuflags
            andr6, r6, r9@ mask wanted bits
            teqr5, r6
            moveqpc, lr
            addr10, r10, #PROC_INFO_SZ@ sizeof(proc_info_list)
            cmpr10, r7
            blt1b
            movr10, #0@ unknown processor
            movpc, lr


            /*
            * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
            * more information about the __proc_info and __arch_info structures.
            */

            內(nèi)核中定義的處理器信息和平臺信息,在連接文件vmlinux.lds.S (archarmkernel)中有如下定義:

            vmlinux.lds.S (archarmkernel)

            __proc_info_begin = .;
            *(.proc.info)
            __proc_info_end = .;
            __arch_info_begin = .;
            *(.arch.info)
            __arch_info_end = .;


            2:.long__proc_info_end
            .long__proc_info_begin
            .long2b
            .long__arch_info_begin
            .long__arch_info_end
            這段代碼的開頭標志,看起來是不是很熟悉,這個就是在第一篇中看到的的,不知道的話,可以回過去查看。這段代碼主要是有關(guān)處理器的查找。

            /*
            * Lookup machine architecture in the linker-build list of architectures.
            * Note that we cant use the absolute addresses for the __arch_info
            * lists since we arent running with the MMU on (and therefore, we are
            * not in the correct address space). We have to calculate the offset.
            *不能使用絕對地址
            * r1 = machine architecture number
            * Returns:
            * r2, r3, r4 corrupted
            * r5 = physical start address of RAM
            * r6 = physical address of IO
            * r7 = byte offset into page tables for IO
            */
            __lookup_architecture_type:
            adrr4, 2b
            ldmiar4, {r2, r3, r5, r6, r7}@ throw away r2, r3
            subr5, r4, r5@ convert addresses
            addr4, r6, r5@ to our address space
            addr7, r7, r5
            1:ldrr5, [r4]@ get machine type
            teqr5, r1@ matches loader number?
            beq2f@ found
            addr4, r4, #SIZEOF_MACHINE_DESC@ next machine_desc
            cmpr4, r7
            blt1b
            movr7, #0@ unknown architecture
            movpc, lr
            2:ldmibr4, {r5, r6, r7}@ found, get results
            movpc, lr

            這段代碼也和上面的一樣。這段完成的工作主要是判斷內(nèi)核對這個平臺的支持。那平臺信息在那里定義呢?

            MACHINE_START (KEV7A400, "Sharp KEV7a400")
            MAINTAINER ("Marc Singer")
            BOOT_MEM (0xc0000000, 0x80000000, io_p2v (0x80000000))
            BOOT_PARAMS (0xc0000100)
            MAPIO (kev7a400_map_io)
            INITIRQ (lh7a400_init_irq)
            .timer= &lh7a40x_timer,
            MACHINE_END

            主要是通過MACHINE_START宏,

            /*
            * Set of macros to define architecture features. This is built into
            * a table by the linker.
            */
            #define MACHINE_START(_type,_name)
            const struct machine_desc __mach_desc_##_type
            __attribute__((__section__(".arch.info"))) = {
            .nr= MACH_TYPE_##_type,
            .name= _name,

            當想要添加新的平臺是,需修改Mach-types (archarmtools)這個文件,因為內(nèi)核在編譯時Makefile腳本會根據(jù)

            Mach-types (archarmtools)文件生成Mach-types.h (includeasm-arm)文件。



            關(guān)鍵詞: ARMLinux內(nèi)核啟

            評論


            技術(shù)專區(qū)

            關(guān)閉